
MISRA-C:2004

Guidelines
for the use
of the
C language
in critical
systems

October 2004

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

First published October 2004
by MIRA Limited
Watling Street
Nuneaton
Warwickshire CV10 0TU
UK
www.misra-c.com

Edition 2 reprinted July 2008 incorporating Technical Corrigendum 1

© MIRA Limited, 2004, 2008.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of MIRA Limited, held on
behalf of the MISRA Consortium.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

ISBN 978-0-9524156-2-6 paperback
ISBN 978-0-9524156-4-0 PDF

Printed by Hobbs the Printers Ltd

British Library Cataloguing in Publication Data.
A catalogue record for this book is available from the British Library

This copy of MISRA-C:2004 - Guidelines for the use of the C language in critical systems is
issued to Tyler Doering.

The file must not be altered in any way. No permission is given for distribution of this file. This
includes but is not exclusively limited to making the copy available to others by email, placing it
on a server for access by intra- or inter-net, or by printing and distributing hardcopies. Any such
use constitutes an infringement of copyright.

MISRA gives no guarantees about the accuracy of the information contained in this PDF version of
the Guidelines. The published paper document should be taken as authoritative.

Information is available from the MISRA web site on how to purchase printed copies of the
document.

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

i

MISRA-C:2004

Guidelines
for the use
of the
C language
in critical
systems

October 2004

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

ii

MISRA Mission Statement: To provide assistance to the automotive industry in the application
and creation within vehicle systems of safe and reliable software.

MISRA, The Motor Industry Software Reliability Association, is a collaboration between vehicle
manufacturers, component suppliers and engineering consultancies which seeks to promote best
practice in developing safety-related electronic systems in road vehicles and other embedded
systems. To this end MISRA publishes documents that provide accessible information for engineers
and management, and holds events to permit the exchange of experiences between practitioners.
www.misra.org.uk

Disclaimer
Adherence to the requirements of this document does not in itself ensure error-free robust

software or guarantee portability and re-use.
Compliance with the requirements of this document, or any other standard, does not of itself

confer immunity from legal obligations.

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

iii

In preparing the original MISRA-C:1998 [1] document, it was hoped to make some impact in the
use of software within the UK automotive industry. Since 1998, the successes and global use of
MISRA-C1 across automotive, aerospace, medical and other industries has been staggering.
Since the publication of MISRA-C:1998, we have received considerable comment of the good,
bad, and in some cases impractical rules included. We therefore set about the task of producing
an update, MISRA-C:2004 (this document), which improves on, and corrects the issues faced by
software engineers implementing MISRA-C:1998.
While producing MISRA-C:2004, the question of addressing the 1999 C standard [8] arose. At
this time, only issues with MISRA-C:1998 are addressed due to the limited support for C99 on
embedded microprocessors.
For the last few years, a dedicated group have met, representing a broad range of interests to refine
and produce MISRA-C:2004. I would like to thank this team for their effort and support.
I would also like to recognise our global partners who have aided our global preparation of
MISRA-C:2004. In the USA, this has been with the SAE J2632 committee led by Bruce Emaus.
In Japan, we have worked with representatives of JSAE, JAMA, and the MISRA Study Group,
and I would particularly like to thank Takao Futagami for his role in co-ordinating access to these
groups.
I would also like to thank all those in a wider group who have provided comments and support to
the MISRA-C effort. This includes all those who participated in the review during 2003, which
led to some rules being re-designed to address the comments received.
In presenting MISRA-C:2004, we have attempted to refine the document in a number of ways.

We have replaced general blanket rules with specific targeted rules.•	
We have replaced “as appropriate” rules with definitive do / do not rules.•	
We have introduced rules for arithmetic operations which provide a sound base for simple •	
and robust statements.
We have 122 mandatory and 20 advisory rules.•	
We have removed 15 rules which did not make sense.•	
We have split complex rules into component parts.•	
We have attempted to remain compatible with MISRA-C:1998, to prevent MISRA‑C:1998 •	
code needing to be modified to conform to MISRA-C:2004.

The MISRA-C project remains on-going, and this document has now been supplemented with
an Exemplar Test Case Suite available at at www.misra-c.com/forum to provide examples of
compliant and non-compliant code.
This document specifies a subset of the C programming language which is intended to be suitable
for embedded systems. It contains a list of rules concerning the use of the C programming language
together with justifications and examples.

Gavin McCall BSc (Hons), MSc, C.Eng, MIEE
MISRA-C Team Leader

Foreword

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

iv

The MISRA consortium would like to thank the following individuals for their significant
contribution to the writing of this document:
Paul Burden Programming Research Ltd
Andrew Burnard Land Rover Ltd
Mike Hennell LDRA Ltd
Chris Hills Phaedrus Systems Ltd
Gavin McCall Visteon Engineering Services Ltd
Steve Montgomery Ricardo UK Ltd
Chris Tapp Keylevel Consultants Ltd
Liz Whiting QinetiQ Ltd

The MISRA consortium also wishes to acknowledge contributions from the following individuals
during the development and review process:
Ganapti Avadhani James F. Gimpel Patrick Markl Kotaro Seike
Walter Banks Martin Gray Martin Meyer Yoko Sekimoto
David Blyth Robert Gruszczynski Claude Mignen Raul Selgado
Paul Boultwood Rob Hague Andrew Mijat Darren Sexton
Richard Burke Trenton Haines Svante Möller Norman S. Shelvik
Ian Chalinder Takahiro Hashimoto Olwen Morgan Joao Silva
Kwok Chan Les Hatton Stephen D. Morton Jochem Spohr
Paul Clark Manabu Hirozawa Tadanori Nakagawa Geert Starre
Valery Creux Hartmut Hörner Heather Neil Richard Swanton
David Crocker Motozo Ikeda Jacob Nevins Benjamin Sweet
William Derouchie Yoshikazu Imura Michael Niemetz Musubi Uno
Alain Deutsch Dern Jérôme Yuji Ninagawa Yan Wang
Todd Dowty Bernd Jesse Kenji Ohgoshi David Ward
Manoj Dwivedi Stuart Jobbins Satoru Ohtsuka Michael Warmuth
Mike Ellims Derek Jones Greg Palarski Thomas Wengler
Bruce Emaus Jeff Kanoza Stephen Parker Paul Whiston
Andy Fiore Shigeyuki Kawana Richard Parkins Karl Woelfer
William Forbes Roland Kilgore Patrik Persson David Wright
S.W.Freeman Helmar Kuder Bernd Reh Shoji Yamashita
Takao Futagami Koyo Kuroda Chris Sampson
Robert Galles Tom Lake Dana Sawyer
Jon Garnsworthy Lars Magnusson Walter Schilling

The contributions of Society of Automotive Engineering (SAE) Embedded Software Taskforce,
Japanese Society of Automotive Engineers (JSAE), Japanese Automotive Manufacturers
Association (JAMA) and Herstellerinitiative Software (HIS) Working Group (Arbeitskreis)
“Software Test” are acknowledged.

Acknowledgements

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

v

1.	 Background – The use of C and issues with it.. 1
1.1	 The use of C in the automotive industry.. 1
1.2	 Language insecurities and the C language... 1
1.3	 The use of C for safety-related systems... 3
1.4	 C standardization... 3
1.5	 Introduction to this edition... 4

2.	 MISRA-C: The vision... 5
2.1	 Rationale for the production of MISRA-C.. 5
2.2	 Objectives of MISRA-C.. 5

3.	 MISRA-C: Scope.. 6
3.1	 Base languages issues.. 6
3.2	 Issues not addressed... 6
3.3	 Applicability.. 6
3.4	 Prerequisite knowledge.. 6
3.5	 C++ issues.. 7
3.6	 Auto-generated code issues.. 7

4.	 Using MISRA-C.. 8
4.1	 The software engineering context.. 8
4.2	 The programming language and coding context.. 8
4.3	 Adopting the subset...11
4.4	 Claiming compliance... 14
4.5	 Continuous improvement... 14

5.	 Introduction to the rules... 15
5.1	 Rule classification.. 15
5.2	 Organisation of rules.. 15
5.3	 Redundancy in the rules... 15
5.4	 Presentation of rules... 16
5.5	 Understanding the source references... 17
5.6	 Scope of rules... 19

Contents

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

vi

6.	 Rules.. 20
6.1	 Environment... 20
6.2	 Language extensions.. 21
6.3	 Documentation... 22
6.4	 Character sets... 24
6.5	 Identifiers... 25
6.6	 Types.. 28
6.7	 Constants.. 29
6.8	 Declarations and definitions... 29
6.9	 Initialisation... 32
6.10	 Arithmetic type conversions.. 33
6.11	 Pointer type conversions.. 44
6.12	 Expressions.. 46
6.13	 Control statement expressions... 53
6.14	 Control flow... 56
6.15	 Switch statements... 59
6.16	 Functions.. 61
6.17	 Pointers and arrays... 64
6.18	 Structures and unions... 66
6.19	 Preprocessing directives... 70
6.20	 Standard libraries... 76
6.21	 Run-time failures... 79

7.	 References... 82

Appendix A: Summary of rules.. 84

Appendix B: MISRA-C:1998 to MISRA-C:2004 rule mapping.. 94

Appendix C: MISRA-C:1998 – Rescinded rules.. 102

Appendix D: Cross references to the ISO standard.. 103
D.1	 MISRA-C:2004 rule numbers to ISO/IEC 9899:1990 references........................... 103
D.2	 ISO/IEC 9899:1990 references to MISRA-C:2004 rule numbers........................... 105

Appendix E: Glossary... 106

Contents (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

1

1.	 Background

Background – The use of C and issues with it1.	

The use of C in the automotive industry1.1	
MISRA-C:1998 [1] was published in 1998. This document is a revision to that document to
address the issues identified with that first version.
The C programming language [2] is growing in importance and use for real-time embedded
applications within the automotive industry. This is due largely to the inherent language flexibility,
the extent of support and its potential for portability across a wide range of hardware. Specific
reasons for its use include:

For many of the microprocessors in use, if there is any other language available besides •	
assembly language then it is usually C. In many cases other languages are simply not
available for the hardware.
C gives good support for the high-speed, low-level, input/output operations, which are •	
essential to many automotive embedded systems.
Increased complexity of applications makes the use of a high-level language more •	
appropriate than assembly language.
C can generate smaller and less RAM-intensive code than many other high-level •	
languages.
A growth in portability requirements caused by competitive pressures to reduce hardware •	
costs by porting software to new, and/or lower cost, processors at any stage in a project
lifecycle.
A growth in the use of auto-generated C code from modelling packages.•	
Increasing interest in open systems and hosted environments.•	

Language insecurities and the C language1.2	
No programming language can guarantee that the final executable code will behave exactly as the
programmer intended. There are a number of problems that can arise with any language, and these
are broadly categorised below. Examples are given to illustrate insecurities in the C language.

The programmer makes mistakes1.2.1	

Programmers make errors, which can be as simple as mis-typing a variable name, or might involve
something more complicated like misunderstanding an algorithm. The programming language has
a bearing on this type of error. Firstly the style and expressiveness of the language can assist or
hinder the programmer in thinking clearly about the algorithm. Secondly the language can make
it easy or hard for typing mistakes to turn one valid construct into another valid (but unintended)
construct. Thirdly the language may or may not detect errors when they are made.
Firstly, in terms of style and expressiveness, C can be used to write well laid out, structured and
expressive code. It can also be used to write perverse and extremely hard-to-understand code.
Clearly the latter is not acceptable in a safety-related system.

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

2

Secondly the syntax of C is such that it is relatively easy to make typing mistakes that lead to
perfectly valid code. For example, it is all too easy to type “=” (assignment) instead of “==”
(logical comparison) and the result is nearly always valid (but wrong), while an extra semi-colon
on the end of an if statement can completely change the logic of the code.
Thirdly the philosophy of C is to assume that the programmers know what they are doing, which
can mean that if errors are made they are allowed to pass unnoticed by the language. An area
in which C is particularly weak in this respect is that of “type checking”. C will not object, for
example, if the programmer tries to store a floating-point number in an integer that they are using
to represent a true/false value. Most such mismatches are simply forced to become compatible. If
C is presented with a square peg and a round hole it doesn’t complain, but makes them fit!

The programmer misunderstands the language1.2.2	

Programmers can misunderstand the effect of constructs in a language. Some languages are more
open to such misunderstandings than others.
There are quite a number of areas of the C language that are easily misunderstood by programmers.
An example is the set of rules for operator precedence. These rules are well defined, but very
complicated, and it is easy to make the wrong assumptions about the precedence that the operators
will take in a particular expression.

The compiler doesn’t do what the programmer expects1.2.3	

If a language has features that are not completely defined, or are ambiguous, then a programmer
can assume one thing about the meaning of a construct, while the compiler can interpret it quite
differently.
There are many areas of the C language which are not completely defined, and so behaviour may
vary from one compiler to another. In some cases the behaviour can vary even within a single
compiler, depending on the context. Altogether the C standard, in Annex G, lists 201 issues that
may vary in this way. This can present a sizeable problem with the language, particularly when it
comes to portability between compilers. However, in its favour, the C standard [2] does at least
list the issues, so they are known.

The compiler contains errors1.2.4	

A language compiler (and associated linker etc.) is itself a software tool. Compilers may not
always compile code correctly. They may, for example, not comply with the language standard in
certain situations, or they may simply contain “bugs”.
Because there are aspects of the C language that are hard to understand, compiler writers have
been known to misinterpret the standard and implement it incorrectly. Some areas of the language
are more prone to this than others. In addition, compiler writers sometimes consciously choose to
vary from the standard.

1.	 Background (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

3

Run-time errors1.2.5	

A somewhat different language issue arises with code that has compiled correctly, but for reasons
of the particular data supplied to it causes errors in the running of the code. Languages can build
run-time checks into the executable code to detect many such errors and take appropriate action.
C is generally poor in providing run-time checking. This is one of the reasons why the code
generated by C tends to be small and efficient, but there is a price to pay in terms of detecting
errors during execution. C compilers generally do not provide run-time checking for such common
problems as arithmetic exceptions (e.g. divide by zero), overflow, validity of addresses for pointers,
or array bound errors.

The use of C for safety-related systems1.3	
It should be clear from section 1.2 that great care needs to be exercised when using C within
safety-related systems. Because of the kinds of issues identified above, various concerns have
been expressed about the use of C on safety-related systems. Certainly it is clear that the full C
language should not be used for programming safety-related systems.
However in its favour as a language is the fact that C is very mature, and consequently well-analysed
and tried in practice. Therefore its deficiencies are known and understood. Also there is a large
amount of tool support available commercially which can be used to statically check the C source
code and warn the developer of the presence of many of the problematic aspects of the language.
If, for practical reasons, it is necessary to use C on a safety-related system then the use of the
language must be constrained to avoid, as far as is practicable, those aspects of the language
which do give rise to concerns. This document provides one such set of constraints (often referred
to as a “language subset”).
Hatton [3] considers that, providing “... severe and automatically enforceable constraints ...” are
imposed, C can be used to write “... software of at least as high intrinsic quality and consistency
as with other commonly used languages”.
Note that assembly language is no more suitable for safety-related systems than C, and in some
respects is worse. Use of assembly language in safety-related systems is not recommended, and
generally if it is to be used then it needs to be subject to stringent constraints.

C standardization1.4	
The standard used for this document is the C programming language as defined by
ISO/IEC 9899:1990 [2], amended and corrected by ISO/IEC 9899/COR1:1995 [4],
ISO/IEC 9899/AMD1:1995 [5], and ISO/IEC 9899/COR2: 1996 [6]. The base 1990 document [7]
is the ISO version of ANSI X3.159-1989 [2]. In content, the ISO/IEC standard and the ANSI
standard are identical. Note, however, that the section numbering is different in the two standards,
and this document follows the section numbering of the ISO standard.
Also note that the ANSI standard [7] contains a useful appendix giving the rationale behind some
of the decisions made by the standardization committee; this does not appear in the ISO edition.
This working group has considered ISO/IEC 9899:1999 [8]. At the time of publication (October
2004), no commercial embedded C99 compilers were available.

1.	 Background (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

4

Introduction to this edition1.5	
Since the original publication of MISRA-C:2004, the MISRA C Working Group have developed
the Exemplar Suite. During the development of the Exemplar Suite, and based on questions
raised on the MISRA C Bulletin Board, a number of issues have been identified. A Technical
Corrigendum document has been released providing clarification on these issues. The clarifications
described by the Technical Corrigendum are incorporated into the Exemplar Suite release 1.0
dated 17 July 2007. This edition of MISRA-C:2004 integrates the modifications contained in the
Technical Corrigendum.

1.	 Background (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

5

MISRA-C: The vision2.	

Rationale for the production of MISRA-C2.1	
The MISRA consortium published its “Development Guidelines for Vehicle Based Software” [9]
in 1994, which describes the full set of measures that should be used in software development. In
particular, the choices of language, compiler and language features to be used, in relationship with
safety integrity level, are recognised to be of major importance. Section 3.2.4.3 (b) and Table 3 of
the MISRA Guidelines [9] address this. One of the measures recommended is the use of a subset
of a standardized language, which is already established practice in the aerospace, nuclear and
defence industries. This document addresses the definition of a suitable subset of C.

Objectives of MISRA-C2.2	
In publishing this document regarding the use of the C programming language, the MISRA
consortium is not intending to promote the use of C in the automotive industry. Rather it recognises
the already widespread use of C, and this document seeks only to promote the safest possible use
of the language.
It is the hope of the MISRA consortium that this document will gain industry acceptance and
that the adoption of a safer subset will become established as best practice both by vehicle
manufacturers and the many component suppliers. It should also encourage training and enhance
competence in general C programming, and in this specific subset, at both an individual level and
a company level.
Great emphasis is placed on the use of static checking tools to enforce compliance with the
subset and it is hoped that this too will become common practice by the developers of automotive
embedded systems.
Although much has been written by academics concerning languages and their pros and cons this
information is not well known among automotive developers. Another goal of this document is
that engineers and managers within the automotive industry will become much more aware of the
language-choice issues.
The availability of many tools to assist in the development of software, particularly tools to
support the use of C, is a benefit. However there is always a concern over the robustness of
their design and implementation, particularly when used for the development of safety-related
software. It is hoped that the active approach of the automotive industry to establish software best
practice (through the MISRA Guidelines [9] and this document) will encourage the commercial
off-the-shelf (COTS) tool suppliers to be equally active in ensuring their products are suitable for
application in the automotive industry.

2.	 The vision

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

6

MISRA-C: Scope3.	

Base languages issues3.1	
The MISRA Guidelines [9] (Table 3) requires that “a restricted subset of a standardized structured
language” be used. For C, this means that the language must only be used as defined in the ISO
standard. This therefore precludes the use of:

K&R C (as defined in the First Edition of “The C Programming language” by Kernighan •	
and Ritchie)
C++•	
Proprietary extensions to the C language•	

Issues not addressed3.2	
Issues of style and code metrics are somewhat subjective. It would be hard for any group of people
to agree on what was appropriate, and it would be inappropriate for MISRA to give definitive
advice. What is important is not the exact style guidelines adopted by a user, or the particular
metrics used, but rather that the user defines style guidelines and appropriate metrics and limits
(see sections 4.2.2 and 4.2.4).
The MISRA consortium is not in a position to recommend particular vendors or tools to enforce the
restrictions adopted. The user of this document is free to choose tools, and vendors are encouraged
to provide tools to enforce the rules. The onus is on the user of this document to demonstrate that
their tool set enforces the rules adequately.

Applicability3.3	
This document is designed to be applied to production code in automotive embedded systems.
In terms of the execution environments defined by ISO/IEC 9899 [2] (section 5.1.2), this document
is aimed at a “free-standing environment”, although it also addresses library issues since some
standard libraries will often be supplied with an embedded compiler.
Most of the requirements of this document may be applicable to embedded systems in other sectors
if such use is considered appropriate. The requirements of this document will not necessarily be
applicable to hosted systems.
It is also not necessary to apply the rules in full when performing compiler and static tool
benchmarking. Sometimes it will be necessary to deliberately break the rules when benchmarking
tools, so as to measure the tools’ responses.

Prerequisite knowledge3.4	
This document is not intended to be an introduction or training aid to the subjects it embraces. It is
assumed that readers of this document are familiar with the ISO C programming language standard
and associated tools, and also have access to the primary reference documents. It also assumes
that users have received appropriate training and are competent C language programmers.

3.	 Scope

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

7

C++ issues3.5	
C++ is a different language to C, and the scope of this document does not include the C++
language, nor does it attempt to comment on the suitability or otherwise of C++ for programming
safety-related systems. However the following comments about the use of C++ compilers and
code should be noted.
C++ is not simply a super-set of C (i.e. C plus extra features). There are a few specific constructs
which have different interpretations in C and C++. In addition, valid C code may contain identifiers
which in C++ would be interpreted as reserved words. For both of these reasons, code written in
C and conforming to the ISO C standard will not necessarily compile under a C++ compiler with
the same results as under a true C compiler. Thus the use of C++ compilers for compiling C code is
deprecated by this document. If, for reasons of availability, a C++ compiler must be used to compile
C code then the areas of difference between the two languages must first be fully understood.
However, the use of additional compilers as extra static checking tools is encouraged. For this
purpose, where the executable code is of no interest, C++ compilers may be used, and indeed can
offer benefits because of the greater type checking they have over C.
Where a compiler which is marketed as “C++” has a strictly conforming ISO C mode of operation
then this is equivalent to a C compiler and may be used as such (in the C mode only). The same is
true of any other tool which includes a conforming ISO C compiler as part of its functionality.
C++ comments should not be used in C code. Although many C compilers support this form of
comment (denoted by //), they are not a part of ISO standard C (see Rule 2.2).

Auto-generated code issues3.6	
If a code-generating tool is to be used, then it will be necessary to select an appropriate tool and
undertake validation. Apart from suggesting that adherence to the requirements of this document
may provide one criterion for assessing a tool, no further guidance is given on this matter and the
reader is referred to the HSE recommendations for COTS [10].
Auto-generated code must be treated in just the same manner as manually produced code for the
purpose of validation (See MISRA Guidelines [9] 3.1.3, Planning for V&V).

3.	 Scope (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

8

Using MISRA-C4.	

The software engineering context4.1	
Using a programming language to produce source code is just one activity in the software
development process. Adhering to best practice in this one activity is of very limited value if the
other commonly accepted development issues are not addressed. This is especially true for the
production of safety-related systems. These issues are all addressed in the MISRA Guidelines [9]
and, for example, include:

Documented development process•	
Quality system capable of meeting the requirements of ISO 9001/ISO 90003/TickIT •	
[11, 12, 13]
Project management•	
Configuration management•	
Hazard analysis•	
Requirements•	
Design•	
Coding•	
Verification•	
Validation•	

It is necessary for the software developers to justify that the whole of their development process is
appropriate for the type of system they are developing. This justification will be incomplete unless a
hazard analysis activity has been performed to determine the safety integrity level of the system.

The programming language and coding context4.2	
Within the coding phase of the software development process, the language subset is just one
aspect of many and again adhering to best practice in this aspect is of very limited value if the
other issues are not addressed. Key issues, following choice of language, are:

Training•	
Style guide•	
Compiler selection and validation•	
Checking tool validation•	
Metrics•	
Test coverage•	

All decisions made on these issues need to be documented, along with the reasons for those
decisions, and appropriate records should be kept for any activities performed. Such documentation
may then be included in a safety justification if required.

4.	 Using MISRA-C

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

9

Training4.2.1	

In order to ensure an appropriate level of skill and competence on the part of those who produce
the C source code formal training should be provided for:

The use of the C programming language for embedded applications•	
The use of the C programming language for high-integrity and safety-related systems•	
The use of static checking tools used to enforce adherence to the subset•	

Style guide4.2.2	

In addition to adopting the subset, an organisation should also have an in-house style guide.
This will contain guidance on issues which do not directly affect the correctness of the code but
rather define a “house style” for the appearance of the source code. These issues are likely to be
subjective. Typical issues to be addressed by a style guide include:

code layout and use of indenting•	
layout of braces “•	 { }” and block structures
statement complexity•	
naming conventions•	
use of comment statements•	
inclusion of company name, copyright notice and other standard file header information•	

While some of the content of the style guide may only be advisory, some may be mandatory.
However the enforcement of the style guide is outside the scope of this document.
For further information on style guides see [14].

Tool selection and validation4.2.3	

When choosing a compiler (which should be understood to include the linker), an ISO C compliant
compiler should be used whenever possible. Where the use of the language is reliant on an
“implementation-defined” feature (as identified in Annex G.3 of the ISO standard [2]) then the
developer must benchmark the compiler to establish that the implementation is as documented by
the compiler writer. See section 5.5.2 for more explanation of Annex G.
When choosing a static checker tool it is clearly desirable that the tool be able to enforce as many
of the rules in this document as possible. To this end it is essential that the tool is capable of
performing checks across the whole program, and not just within a single source file. In addition,
where a checker tool has capabilities to perform checks beyond those required by this document
it is recommended that the extra checks are used.
The compiler and the static checking tool are generally seen as “trusted” processes. This means
that there is a certain level of reliance on the output of the tools, therefore the developer must
ensure that this trust is not misplaced. Ideally this should be achieved by the tool supplier running
appropriate validation tests. Note that, while it is possible to use a validation suite to test a
compiler for an embedded target, no formal validation scheme exists at the time of publication of
this document. In addition, the tools should have been developed to a quality system capable of
meeting the requirements of ISO 9001/ISO 90003 [11, 12, 13]

4.	 Using MISRA-C (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

10

It should be possible for the tool supplier to show records of verification and validation activities
together with change records that show a controlled development of the software. The tool supplier
should have a mechanism for:

recording faults reported by the users•	
notifying existing users of known faults•	
correcting faults in future releases•	

The size of the existing user base together with an inspection of the faults reported over the
previous 6 to 12 months will give an indication of the stability of the tool.
It is often not possible to obtain this level of assurance from tool suppliers, and in these cases the
onus is on the developer to ensure that the tools are of adequate quality.
Some possible approaches the developer could adopt to gain confidence in the tools are:

perform some form of documented validation testing•	
assess the software development process of the tool supplier•	
review the performance of the tool to date•	

The validation test could be performed by creating code examples to exercise the tools. For
compilers this could consist of known good code from a previous application. For a static checking
tool, a set of code files should be written, each breaking one rule in the subset and together covering
as many as possible of the rules. For each test file the static checking tool should then find the non-
conformant code. Although such tests would necessarily be limited they would establish a basic
level of tool performance.
It should be noted that validation testing of the compiler must be performed for the same set of
compiler options, linker options and source library versions used when compiling the product
code.
Where additional static analysis checks are available, the use of these additional checks is
recommended.

Source complexity metrics4.2.4	

The use of source code complexity metrics is highly recommended. These can be used to prevent
unwieldy and untestable code being written by looking for values outside of established norms.
The use of tools to collect the data is also highly recommended. Many of the static checking tools
that may be used to enforce the subset also have the capability for producing metrics data.
For details of possible source code metrics see “Software Metrics: A Rigorous and Practical
Approach” by Fenton and Pfleeger [15] and the MISRA report on Software Metrics [16].

Test coverage4.2.5	

The expected statement coverage of the software should be defined before the software is designed
and written. Code should be designed and written in a manner that supports high statement
coverage during testing. The term “Design For Test” (DFT) has been applied to this concept in

4.	 Using MISRA-C (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

11

mechanical, electrical and electronic engineering. This issue needs to be considered during the
activity of writing the code, since the ability to achieve high statement coverage is an emergent
property of the source code.
Use of a subset, which reduces the number of implementation-dependent features, and increases
the rigour of module interface compatibility can lead to software that can be integrated and tested
with greater ease.
Balancing the following metrics can facilitate achieving high statement coverage:

code size•	
cyclomatic complexity•	
static path count•	

With a planned approach, the extra effort expended on software design, language use and design
for test is more than offset by the reduction in the time required to achieve high statement coverage
during test. See [16, 17].

Adopting the subset4.3	
In order to develop code that adheres to the subset the following steps need to be taken:

Produce a compliance matrix which states how each rule is enforced•	
Produce a deviation procedure•	
Formalise the working practices within the quality management system•	

Compliance matrix4.3.1	

In order to ensure that the source code written does conform to the subset it is necessary to have
measures in place which check that none of the rules have been broken. The most effective means
of achieving this is to use one or more of the static checking tools that are available commercially.
Where a rule cannot be checked by a tool, then a manual review will be required.
In order to ensure that all the rules have been covered then a compliance matrix should be produced
which lists each rule and indicates how it is to be checked. See Table 1 for an example, and see
Appendix A for a summary list of the rules, which could be used to assist in generating a full
compliance matrix.

Rule No. Compiler 1 Compiler 2 Checking Tool 1 Checking Tool 2 Manual Review
1.1 warning 347
1.2 error 25
1.3 message 38
1.4 warning 97
1.5 Proc x.y

Table 1: Example compliance matrix

4.	 Using MISRA-C (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

12

If the developer has additional local restrictions, these too can be added to the compliance matrix.
Where specific restrictions are omitted, full justifications shall be given. These justifications must
be fully supported by a C language expert together with manager level concurrence.

Deviation procedure4.3.2	

It is recognised that in some instances it may be necessary to deviate from the rules given in this
document. For example, source code written to interface with the microprocessor hardware will
inevitably require the use of proprietary extensions to the language.
In order for the rules to have authority it is necessary that a formal procedure be used to authorise
these deviations rather than an individual programmer having discretion to deviate at will. It is
expected that the procedure will be based around obtaining a sign-off for each deviation, or class
of deviation. The use of a deviation must be justified on the basis of both necessity and safety.
While this document does not give, nor intend to imply, any grading of importance of each of the
rules, it is accepted that some provisions are more critical than others. This should be reflected
in the deviation procedure, where for more serious deviations greater technical competence is
required to assess the risk incurred and higher levels of management are required to accept this
increased risk. Where a formal quality management system exists, the deviation procedure should
be a part of this system.
Deviations may occur for a specific instance, i.e. a one-off occurrence in a single file, or for a class
of circumstances, i.e. a systematic use of a particular construct in a particular circumstance, for
example the use of a particular language extension to implement an input/output operation in files
which handle serial communications.
Strict adherence to all rules is unlikely and, in practice, deviations associated with individual
situations, are admissible. There are two categories of deviation.

Project Deviation: A Project Deviation is defined as a permitted relaxation of rule •	
requirements to be applied in specified circumstances. In practice, Project Deviations will
usually be agreed at the start of a project.
Specific Deviation: A Specific Deviation will be defined for a specific instance of a rule •	
violation in a single file and will typically be raised in response to circumstances which
arise during the development process.

Project Deviations should be reviewed regularly and this review should be a part of the formal
deviation process.
Many, if not most, of the circumstances where rules need to be broken are concerned with input/
output operations. It is recommended that the software be designed such that input/output concerns
are separated from the other parts of the software. As far as possible Project Deviations should
then be restricted to this input/output section of the code. Code subject to Project Deviations
should be clearly marked as such.
The purpose of this document is to avoid problems by thinking carefully about the issues and
taking all responsible measures to avoid the problems. The deviation procedure should not be
used to undermine this intention. In following the rules in this document the developer is taking

4.	 Using MISRA-C (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

13

advantage of the effort expended by MISRA in understanding these issues. If the rules are to be
deviated from, then the developer is obliged to understand the issues for themselves. All deviations,
standing and specific, should be documented.
For example, if it is known beforehand that it will be difficult to adhere to a rule, the software
developer should submit a written Project Deviation Request and agreement with the customer
should be obtained prior to programming.
A Project Deviation Request should include the following:

Details of the deviation, i.e. the rule that is being violated•	
Circumstances in which the need for the deviation arises•	
Potential consequences which may result from the deviation•	
Justification for the deviation•	
A demonstration of how safety is assured•	

When the need for a deviation arises during or at the end of the development process, the software
developer should submit a written Specific Deviation Request.
A Specific Deviation Request should include the following:

Details of the deviation, i.e. the rule that is being violated•	
Potential consequences which may result from the deviation•	
Justification for the deviation•	
A demonstration of how safety is assured•	

Detailed implementation of these procedures is left to the discretion of the user.

Formalisation within quality system4.3.3	

The use of the subset, the static checking tools and deviation procedure should be described by
formal documents within the quality management system. They will then be subject to the internal
and external audits associated with the quality system and this will help ensure their consistent use.

Introducing the subset4.3.4	

Where an organisation has an established C coding environment it is recommended that the
requirements of this document be introduced in a progressive manner (see chapter 5 of Hatton [3]).
It may take 1 to 2 years to implement all aspects of this document.
Where a product contains legacy code written prior to the use of the subset, it may be impractical
to rewrite it to bring it into conformance with the subset. In these circumstances the developer
must decide upon a strategy for managing the introduction of the subset (for example: all new
modules will be written to the subset and existing modules will be rewritten to the subset if they
are subject to a change which involves more than 30% of the non-comment source lines).

4.	 Using MISRA-C (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

14

Claiming compliance4.4	
Compliance can only be claimed for a product and not for an organisation.
When claiming compliance to the MISRA-C document for a product a developer is stating that
evidence exists to show:

A compliance matrix has been completed which shows how compliance has been enforced•	
All of the C code in the product is compliant with the rules of this document or subject to •	
documented deviations
A list of all instances of rules not being followed is being maintained, and for each •	
instance there is an appropriately signed-off deviation
The issues mentioned in section 4.2 have been addressed•	

Continuous improvement4.5	
Adherence to the requirements of this document should only be considered as a first step in a
process of continuous improvement. Users should be aware of the other literature on the subject
(see references) and actively seek to improve their development process by the use of metrics.

4.	 Using MISRA-C (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

15

Introduction to the rules5.	
This section explains the presentation of the rules in section 6 of this document. It serves as an
introduction to the main content of the document as presented in that section.

Rule classification5.1	
Every rule in section 6 is classified as being either “required” or “advisory”, as described below.
Beyond this basic classification the document does not give, nor intend to imply, any grading of
importance of each of the rules. All required rules should be considered to be of equal importance,
as should all advisory rules. The omission of an item from this document does not imply that it is
less important.
The meanings of “required” and “advisory” rules are as follows.

Required rules5.1.1	

These are mandatory requirements placed on the programmer. There are 122 “required” rules in this
document. C code which is claimed to conform to this document shall comply with every required
rule (with formal deviations required where this is not the case, as described in section 4.3.2).

Advisory rules5.1.2	

These are requirements placed on the programmer that should normally be followed. However
they do not have the mandatory status of required rules. There are 20 “advisory” rules in this
document. Note that the status of “advisory” does not mean that these items can be ignored, but
that they should be followed as far as is reasonably practical. Formal deviations are not necessary
for advisory rules, but may be raised if it is considered appropriate.

Organisation of rules5.2	
The rules are organised under different topics within the C language. However there is inevitably
overlap, with one rule possibly being relevant to a number of topics. Where this is the case the rule
has been placed under the most relevant topic.

Redundancy in the rules5.3	
There are a few cases within this document where a rule is given which refers to a language
feature which is banned or advised against elsewhere in the document. This is intentional. It may
be that the user chooses to use that feature, either by raising a deviation against a required rule,
or by choosing not to follow an advisory rule. In this case the second rule, constraining the use of
that feature, becomes relevant.

5.	 Introduction to the rules

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

16

Presentation of rules5.4	
The individual requirements of this document are presented in the following format:

Rule <number> (<category>): <requirement text>
[<source ref>]

Normative text

where the fields are as follows:
<•	 number> Every rule has a unique number. This number consists of a rule group prefix
and a group member suffix.
<•	 category> is one of “required” or “advisory”, as explained in section 5.1.
<•	 requirement text> The rule itself.
<•	 source ref> This indicates the primary source(s) which led to this item or group of
items, where applicable. See section 5.5 for an explanation of the significance of these
references, and a key to the source materials.

Normative text is provided for each item or group of related items. In order to conform with
MISRA-C:2004, it is necessary to meet the requirements of this normative text.
The normative text gives, where appropriate, some explanation of the underlying issues being
addressed by the rule(s), and examples of how to apply the rule(s). If there is no explanatory text
immediately following a rule then the relevant text will be found following the group of rules, and
applies to all the rules which precede it. Similarly a source reference following a group of rules
applies to the whole group.
The normative text is not intended as a tutorial in the relevant language feature, as the reader
is assumed to have a working knowledge of the language. Further information on the language
features can be obtained by consulting the relevant section of the language standard or other C
language reference books. Where a source reference is given for one or more of the “Annex G”
items in the ISO standard, then the original issue raised in the ISO standard may provide additional
help in understanding the rule.
Within the rules and their normative text, the following font styles are used to represent C keywords
and C code:

C keywords appear in italic text
C code appears in a monospaced font, either within other text or as

separate code fragments;

Note that where code is quoted, the fragments may be incomplete (for example an if statement
without its body). This is for the sake of brevity.
In code fragments, the following typedef’d types have been assumed (to comply with Rule 6.3):

5.	 Introduction to the rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

17

char_t plain 8 bit character
uint8_t unsigned 8 bit integer
uint16_t unsigned 16 bit integer
uint32_t unsigned 32 bit integer
int8_t signed 8 bit integer
int16_t signed 16 bit integer
int32_t signed 32 bit integer
float32_t 32 bit floating-point
float64_t 64 bit floating-point

Non-specific variable names are constructed to give an indication of the type. For example:
uint8_t u8a;
sint32_t s32a;

Understanding the source references5.5	
Where a rule originates from one or more published sources these are indicated in square brackets
after the rule. This serves two purposes. Firstly the specific sources may be consulted by a
reader wishing to gain a fuller understanding of the rationale behind the rule (for example when
considering a request for a deviation). Secondly, with regard to issues in “Annex G” of the ISO
standard, the type of the source gives extra information about the nature of the problem (see
section 5.5.2).
Rules which do not have a source reference may have originated from a contributing company’s
in-house standard, or have been suggested by a reviewer, or be widely accepted “good practice”.
A key to the references, and advice on interpreting them, is given below.

Key to the source references5.5.1	

Reference	 Source
Annex G of ISO/IEC 9899 [2]

Unspecified Unspecified behaviour (G.1)
Undefined Undefined behaviour (G.2)
Implementation Implementation-defined behaviour (G.3)
Locale Locale-specific behaviour (G.4)

Other
MISRA Guidelines The MISRA Guidelines [9]
K&R Kernighan and Ritchie [18]
Koenig “C Traps and Pitfalls”, Koenig [19]
IEC 61508 IEC 61508:1998–2000 [20]

5.	 Introduction to the rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

18

Where numbers follow the reference, they have the following meanings:
Annex G of ISO/IEC 9899 references: The number of the item in the relevant section of •	
the Annex, numbered from the beginning of that section. So for example [Locale 2] is the
second item in section G.4 of the standard.
In other references, the relevant page number is given (unless stated otherwise).•	

Understanding Annex G references5.5.2	

Where a rule is based on issues from Annex G of the ISO C standard, it is helpful for the reader
to understand the distinction between “unspecified”, “undefined”, “implementation-defined” and
“locale-specific” issues. These are explained briefly here, and further information can be found in
Hatton [3].

Unspecified5.5.2.1	

These are language constructs that must compile successfully, but in which the compiler writer
has some freedom as to what the construct does. An example of this is the “order of evaluation”
described in Rule 12.2. There are 22 such issues.
It is unwise to place any reliance on the compiler behaving in a particular way. The compiler need
not even behave consistently across all possible constructs.

Undefined5.5.2.2	

These are essentially programming errors, but for which the compiler writer is not obliged
to provide error messages. Examples are invalid parameters to functions, or functions whose
arguments do not match the defined parameters.
These are particularly important from a safety point of view, as they represent programming errors
which may not necessarily by trapped by the compiler.

Implementation-defined5.5.2.3	

These are a bit like the “unspecified” issues, the main difference being that the compiler writer
must take a consistent approach and document it. In other words the functionality can vary from
one compiler to another, making code non-portable, but on any one compiler the behaviour should
be well defined. An example of this is the behaviour of the integer division and remainder operators
“/” and “%” when applied to one positive and one negative integer. There are 76 such issues.
These tend to be less critical from a safety point of view, provided the compiler writer has fully
documented their approach and then stuck to what they have implemented. It is advisable to avoid
these issues where possible.

Locale-specific5.5.2.4	

These are a small set of features which may vary with international requirements. An example of
this is the facility to represent a decimal point by the “,” character instead of the “.” character.
There are 6 such issues. No issues arising from this source are addressed in this document.

5.	 Introduction to the rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

19

Scope of rules5.6	
In principle the rules are to be applied across the file boundaries of the complete set of program
files for the application. While the majority of the rules can be applied within a single translation
unit, rule numbers 1.1, 1.2, 1.3, 1.4, 2.1, 3.6, 5.1, 5.3, 5.4, 5.5, 5.6, 5.7, 8.4, 8.8, 8.9, 8.10, 12.2,
12.4, 14.1, 14.2, 16.2, 16.4, 17.2, 18.1, 18.2, 18.3 and 21.1 must be applied across the collective
set of files.

5.	 Introduction to the rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

20

Rules6.	

Environment6.1	

Rule 1.1 (required):	 All code shall conform to ISO/IEC 9899:1990
“Programming languages — C”, amended and corrected by
ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996.

[MISRA Guidelines Table 3; IEC 61508 Part 7: Table C.1]
These guidelines are based on ISO/IEC 9899:1990 [2] amended and corrected by ISO/IEC 9899/
COR1:1995 [4], ISO/IEC 9899/AMD1:1995 [5], and ISO/IEC 9899/COR2:1996 [6]. No claim is
made as to their suitability with respect to the ISO/IEC 9899:1999 [8] version of the standard. Any
reference in this document to “Standard C” refers to the older ISO/IEC 9899:1990 [2] standard.
It is recognised that it will be necessary to raise deviations (as described in section 4.3.2) to permit
certain language extensions, for example to support hardware specific features.
Deviations are required if the environmental limits as specified in ISO/IEC 9899:1990 5.2.4 [2]
are exceeded, other than as allowed by Rule 5.1.

Rule 1.2 (required):	 No reliance shall be placed on undefined or unspecified
behaviour.

This rule requires that any reliance on undefined and unspecified behaviour, which is not specifically
addressed by other rules, shall be avoided. Where a specific behaviour is explicitly covered in
another rule, only that specific rule needs to be deviated if required. See ISO/IEC 9899:1990
Appendix G [2] for a complete list of these issues.

Rule 1.3 (required):	 Multiple compilers and/or languages shall only be used if there
is a common defined interface standard for object code to which
the languages/compilers/assemblers conform.

[Unspecified 11]
If a module is to be implemented in a language other than C, or compiled on a different C compiler,
then it is essential to ensure that the module will integrate correctly with other modules. Some
aspects of the behaviour of the C language are dependent on the compiler, and therefore these must
be understood for the compiler being used. Examples of issues that need to be understood are:
stack usage, parameter passing and the way in which data values are stored (lengths, alignments,
aliasing, overlays, etc.)

6.	 Rules

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

21

Rule 1.4 (required):	 The compiler/linker shall be checked to ensure that 31 character
significance and case sensitivity are supported for external
identifiers.

[Undefined 7; Implementation 5, 6]
The ISO standard requires external identifiers to be distinct in the first 6 characters. However
compliance with this severe and unhelpful restriction is considered an unnecessary limitation
since most compilers/linkers allow at least 31 character significance (as for internal identifiers).
The compiler/linker must be checked to establish this behaviour. If the compiler/linker is not
capable of meeting this limit, then use the limit of the compiler.

Rule 1.5 (advisory):	 Floating-point implementations should comply with a defined
floating-point standard.

Floating-point arithmetic has a range of problems associated with it. Some (but not all) of the
problems can be overcome by using an implementation that conforms to a recognised standard.
An example of an appropriate standard is ANSI/IEEE Std 754 [21].
The definition of the floating‑point types, in accordance with Rule 6.3, provides an opportunity for
noting the floating‑point standard in use, for example:

/* IEEE 754 single‑precision floating‑point */
typedef float float32_t;

Language extensions6.2	

Rule 2.1 (required):	 Assembly language shall be encapsulated and isolated.
[Unspecified 11]

Where assembly language instructions are required it is recommended that they be encapsulated
and isolated in either (a) assembler functions, (b) C functions or (c) macros.
For reasons of efficiency it is sometimes necessary to embed simple assembly language instructions
in-line, for example to enable and disable interrupts. If it is necessary to do this for any reason,
then it is recommended that it be achieved by using macros.
Note that the use of in-line assembly language is an extension to standard C, and therefore also
requires a deviation against Rule 1.1.

#define NOP asm(" NOP")

Rule 2.2 (required):	 Source code shall only use /* … */ style comments.

This excludes the use of // C99 style comments and C++ style comments, since these are not
permitted in C90. Many compilers support the // style of comments as an extension to C90. The
use of // in preprocessor directives (e.g. #define) can vary. Also the mixing of /* … */ and //
is not consistent. This is more than a style issue, since different (pre C99) compilers may behave
differently.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

22

Rule 2.3 (required):	 The character sequence /* shall not be used within a comment.

C does not support the nesting of comments even though some compilers support this as a language
extension. A comment begins with /* and continues until the first */ is encountered. Any /*
occurring inside a comment is a violation of this rule. Consider the following code fragment:

/* some comment, end comment marker accidentally omitted

<<New Page>>
Perform_Critical_Safety_Function(X);
/* this comment is not compliant */

In reviewing the page containing the call to the function, the assumption is that it is executed code.
Because of the accidental omission of the end comment marker, the call to the safety critical
function will not be executed.

Rule 2.4 (advisory):	 Sections of code should not be “commented out”.

Where it is required for sections of source code not to be compiled then this should be achieved by
use of conditional compilation (e.g. #if or #ifdef constructs with a comment). Using start and end
comment markers for this purpose is dangerous because C does not support nested comments, and
any comments already existing in the section of code would change the effect.

Documentation6.3	

Rule 3.1 (required):	 All usage of implementation-defined behaviour shall be
documented.

This rule requires that any reliance on implementation-defined behaviour, which is not specifically
addressed by other rules, shall be documented, for example by reference to compiler documentation.
Where a specific behaviour is explicitly covered in another rule, only that specific rule needs to be
deviated if required. See ISO/IEC 9899:1990 Appendix G [2] for a complete list of these issues.

Rule 3.2 (required):	 The character set and the corresponding encoding shall be
documented.

For example, ISO 10646 [22] defines an international standard for mapping character sets to
numeric values. For portability, “character-constants” and “string-literals” should only contain
characters that map to a documented subset. The source code is written in one or more character
sets. Optionally, the program can execute in a second or multiple character sets. All the source and
execution character sets shall be documented.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

23

Rule 3.3 (advisory):	 The implementation of integer division in the chosen compiler
should be determined, documented and taken into account.

[Implementation 18]
Potentially an ISO compliant compiler can do one of two things when dividing two signed integers,
one of which is positive and one negative. Firstly it may round up, with a negative remainder
(e.g. ‑5/3 = ‑1 remainder ‑2), or secondly it may round down with a positive remainder
(e.g. ‑5/3 = ‑2 remainder +1).
It is important to determine which of these is implemented by the compiler and to document it for
programmers, especially if it is the second (perhaps less intuitive) implementation.

Rule 3.4 (required):	 All uses of the #pragma directive shall be documented and
explained.

[Implementation 40]
This rule places a requirement on the user of this document to produce a list of any pragmas
they choose to use in an application. The meaning of each pragma shall be documented. There
shall be sufficient supporting description to demonstrate that the behaviour of the pragma, and its
implications for the application, have been fully understood.
Any use of pragmas should be minimised, localised and encapsulated within dedicated functions
wherever possible.

Rule 3.5 (required):	 If it is being relied upon, the implementation defined behaviour
and packing of bitfields shall be documented.

[Unspecified 10; Implementation 30, 31]
This is a particular problem where bit fields are used because of the poorly defined aspects of bit
fields described under Rules 6.4 and 6.5. The “bit field” facility in C is one of the most poorly
defined parts of the language. There are two main uses to which bit fields could be put:

To access the individual bits, or groups of bits, in larger data types (in conjunction with •	
unions). This use is not permitted (see Rule 18.4).
To allow flags or other short-length data to be packed to save storage space.•	

The packing together of short-length data to economise on storage is the only acceptable use of bit
fields envisaged in this document. Provided the elements of the structure are only ever accessed
by their name, the programmer needs to make no assumptions about the way that the bit fields are
stored within the structure.
It is recommended that structures be declared specifically to hold the sets of bit fields, and do
not include any other data within the same structure. Note that Rule 6.3 need not be followed in
defining bit-fields, since their lengths are specified in the structure.
If the compiler has a switch to force bit fields to follow a particular layout then this could assist
in such a justification.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

24

For example the following is acceptable:
struct message /* Struct is for bit-fields only */
{
 signed int little: 4; /* Note: use of basic types is required */
 unsigned int x_set: 1;
 unsigned int y_set: 1;
} message_chunk;

If using bit fields, be aware of the potential pitfalls and areas of implementation-defined (i.e. non-
portable) behaviour. In particular the programmer should be aware of the following:

The alignment of the bit fields in the storage unit is implementation-defined, that is •	
whether they are allocated from the high end or low end of the storage unit (usually a
byte).
Whether or not a bit field can overlap a storage unit boundary is also implementation-•	
defined (e.g. if a 6-bit field and a 4-bit field are declared in that order, whether the 4 bit
field will start a new byte or whether it will be 2 bits in one byte and 2 bits in the next).

Rule 3.6 (required):	 All libraries used in production code shall be written to comply
with the provisions of this document, and shall have been subject
to appropriate validation.

[IEC 61508 Part 3]
This rule refers to any libraries used in the production code, which therefore may include standard
libraries supplied with the compiler, other third-party libraries, or libraries designed in-house.
This is recommended by IEC 61508 Part 3.

Character sets6.4	

Rule 4.1 (required):	 Only those escape sequences that are defined in the ISO C
standard shall be used.

[Undefined 11; Implementation 11]
 Only “simple-escape-sequences” in ISO/IEC 9899:1990 [3–6] Section 6.1.3.4 and \0 are permitted
escape sequences.
All “hexadecimal-escape-sequences” are prohibited.
The “octal-escape-sequences” other than \0 are also prohibited under Rule 7.1.

Rule 4.2 (required):	 Trigraphs shall not be used.

Trigraphs are denoted by a sequence of 2 question marks followed by a specified third character
(e.g. ??- represents a “~” (tilde) character and ??) represents a “]”). They can cause accidental
confusion with other uses of two question marks. For example the string

"(Date should be in the form ??-??-??)"

would not behave as expected, actually being interpreted by the compiler as
"(Date should be in the form ~~]"

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

25

Identifiers6.5	

Rule 5.1 (required):	 Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

[Undefined 7; Implementation 5, 6]
The ISO standard requires internal identifiers to be distinct in the first 31 characters to guarantee
code portability. This limitation shall not be exceeded, even if the compiler supports it. This rule
shall apply across all name spaces. Macro names are also included and the 31 character limit
applies before and after substitution.
The ISO standard requires external identifiers to be distinct in the first 6 characters, regardless
of case, to guarantee optimal portability. However this limitation is particularly severe and is
considered unnecessary. The intent of this rule is to sanction a relaxation of the ISO requirement
to a degree commensurate with modern environments and it shall be confirmed that 31 character/
case significance is supported by the implementation.
Note that there is a related issue with using identifier names that differ by only one or a few
characters, especially if the identifier names are long. The problem is heightened if the differences
are in easily mis-read characters like 1 (one) and l (lower case L), 0 and O, 2 and Z, 5 and S, or n
and h. It is recommended to ensure that identifier names are always easily visually distinguishable.
Specific guidelines on this issue could be placed in the style guidelines (see section 4.2.2).

Rule 5.2 (required):	 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

The terms outer and inner scope are defined as follows. Identifiers that have file scope can be
considered as having the outermost scope. Identifiers that have block scope have a more inner
scope. Successive, nested blocks, introduce more inner scopes. The rule is only to disallow the
case where a second inner definition hides an outer definition. If the second definition does not
hide the first definition, then this rule is not violated.
Hiding identifiers with an identifier of the same name in a nested scope leads to code that is very
confusing. For example:

int16_t i;
{
 int16_t i; /* This is a different variable */
 /* This is not compliant */
 i = 3; /* It could be confusing as to which i this refers */
}

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

26

Rule 5.3 (required):	 A typedef name shall be a unique identifier.

No typedef name shall be reused either as a typedef name or for any other purpose.
For example:

{
 typedef unsigned char uint8_t;
}
{
 typedef unsigned char uint8_t; /* Not compliant - redefinition */
}
{
 unsigned char uint8_t; /* Not compliant - reuse of uint8_t */
}

typedef names shall not be reused anywhere within a program. The same typedef shall not be
duplicated anywhere in the source code files even if the declarations are identical. Where the type
definition is made in a header file, and that header file is included in multiple source files, this rule
is not violated.

Rule 5.4 (required):	 A tag name shall be a unique identifier.

No tag name shall be reused either to define a different tag or for any other purpose within the
program. ISO/IEC 9899:1990 [2] does not define the behaviour when an aggregate declaration
uses a tag in different forms of type specifier (struct or union). Either all uses of the tag should be
in structure type specifiers, or all uses should be in union type specifiers, For example:

struct stag { uint16_t a; uint16_t b; };

struct stag a1 = { 0, 0 }; /* Compliant - compatible with above */
union stag a2 = { 0, 0 }; /* Not compliant - not compatible with
 previous declarations */

void foo(void)
{
 struct stag { uint16_t a; }; /* Not compliant - tag stag redefined */
}

The same tag definition shall not be duplicated anywhere in the source code files even if the
definitions are identical. Where the tag definition is made in a header file, and that header file is
included in multiple source files, this rule is not violated.

Rule 5.5 (advisory):	 No object or function identifier with static storage duration
should be reused.

Regardless of scope, no identifier with static storage duration should be re-used across any source
files in the system. This includes objects or functions with external linkage and any objects or
functions with the static storage class specifier.
While the compiler can understand this and is in no way confused, the possibility exists for the
user to incorrectly associate unrelated variables with the same name.
One example of this confusion is having an identifier name with internal linkage in one file and
the same identifier name with external linkage in another file.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

27

Rule 5.6 (advisory):	 No identifier in one name space should have the same spelling
as an identifier in another name space, with the exception of
structure member and union member names.

Name space and scope are different. This rule is not concerned with scope. For example, ISO C
allows the same identifier (vector) for both a tag and a typedef at the same scope.

typedef struct vector { uint16_t x ; uint16_t y; uint16_t z; } vector;
/* Rule violation ^^ ^^ */

ISO C defines a number of different name spaces (see ISO/IEC 9899:1990 6.1.2.3 [2]). It is
technically possible to use the same name in separate name spaces to represent completely different
items. However this practice is deprecated because of the confusion it can cause, and so names
should not be reused, even in separate name spaces.
The example below illustrates a violation of this rule in which value is inadvertently used instead
of record.value:

struct { int16_t key; int16_t value; } record;
int16_t value; /* Rule violation - second use of value */

record.key = 1;
value = 0; /* should have been record.value */

By contrast, the example below does not violate the rule because two member names are less
likely to be confused:

struct device_q { struct device_q *next; /* ... */ }
devices[N_DEVICES];
struct task_q { struct task_q *next; /* ... */ }
tasks[N_TASKS];

devices[0].next = &devices[1];
tasks[0].next = &tasks[1];

Rule 5.7 (advisory):	 No identifier name should be reused.
Regardless of scope, no identifier should be re-used across any files in the system. This rule
incorporates the provisions of Rules 5.2, 5.3, 5.4, 5.5 and 5.6.

struct air_speed
{
 uint16_t speed; /* knots */
} * x;
struct gnd_speed
{
 uint16_t speed; /* mph */
 /* Not Compliant - speed is in different units */
} * y;
x->speed = y->speed;

Where an identifier name is used in a header file, and that header file is included in multiple
source files, this rule is not violated. The use of a rigorous naming convention can support the
implementation of this rule.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

28

Types6.6	

Rule 6.1 (required):	 The plain char type shall be used only for the storage and use of
character values.

[Implementation 14]

Rule 6.2 (required):	 signed and unsigned char type shall be used only for the storage
and use of numeric values.

There are three distinct char types, (plain) char, signed char and unsigned char. signed char and
unsigned char shall be used for numeric data and plain char shall be used for character data. The
signedness of the plain char type is implementation defined and should not be relied upon.
Character values/data are character constants or string literals such as 'A', '5', '\n', "a".
Numeric values/data are numbers such as 0, 5, 23, \x10, -3.
Character sets map text characters onto numeric values. Character values are the “text”.
The permissible operators on plain char types are the simple assignment operator (=), equality
operators (==, !=) and explicit casts to integral types. Additionally, the second and third operands
of the ternary conditional operator may both be of plain char type.

Rule 6.3 (advisory):	 typedefs that indicate size and signedness should be used in place
of the basic numerical types.

The basic numerical types of signed and unsigned variants of char, int, short, long and float,
double should not be used, but specific-length typedefs should be used. Rule 6.3 helps to clarify
the size of the storage, but does not guarantee portability because of the asymmetric behaviour of
integral promotion. See discussion of integral promotion — section 6.10. It is still important to
understand the integer size of the implementation.
Programmers should be aware of the actual implementation of the typedefs under these definitions.
For example, the ISO (POSIX) typedefs as shown below are recommended and are used for all basic
numerical and character types in this document. For a 32-bit integer machine, these are as follows:

typedef char char_t;
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed long int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long uint64_t;
typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;

typedefs are not considered necessary in the specification of bit-field types.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

29

Rule 6.4 (required):	 Bit fields shall only be defined to be of type unsigned int or signed
int.

[Undefined 38; Implementation 29]
Using int is implementation defined because bit fields of type int can be either signed or unsigned. The
use of enum, short or char types for bit fields is not allowed because the behaviour is undefined.

Rule 6.5 (required):	 Bit fields of signed type shall be at least 2 bits long.

A signed bit field of 1 bit length is not useful.

Constants6.7	

Rule 7.1 (required):	 Octal constants (other than zero) and octal escape sequences
shall not be used.

[Koenig 9]
Any integer constant beginning with a “0” (zero) is treated as octal. So there is a danger, for
example, with writing fixed length constants. For example, the following array initialisation for
3-digit bus messages would not do as expected (052 is octal, i.e. 42 decimal):

code[1] = 109; /* equivalent to decimal 109 */
code[2] = 100; /* equivalent to decimal 100 */
code[3] = 052; /* equivalent to decimal 42 */
code[4] = 071; /* equivalent to decimal 57 */

Octal escape sequences can be problematic because the inadvertent introduction of a decimal
digit ends the octal escape and introduces another character. The value of the first expression in
the following example is implementation‑defined because the character constant consists of two
characters, “\10” and “9”. The second character constant expression below contains the single
character “\100”. Its value will be implementation‑defined if character 64 is not represented in the
basic execution character set.

code[5] = '\109'; /* implementation‑defined, two character constant */
code[6] = '\100'; /* set to 64, or implementation‑defined */

It is better not to use octal constants or escape sequences at all, and to check statically for any
occurrences. The integer constant zero (written as a single numeric digit), is strictly speaking an
octal constant, but is a permitted exception to this rule. Additionally “\0” is the only permitted
octal escape sequence.

Declarations and definitions6.8	

Rule 8.1 (required):	 Functions shall have prototype declarations and the prototype
shall be visible at both the function definition and call.

[Undefined 22, 23]
The use of prototypes enables the compiler to check the integrity of function definitions and
calls. Without prototypes the compiler is not obliged to pick up certain errors in function calls

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

30

(e.g. different number of arguments from the function body, mismatch in types of arguments
between call and definition). Function interfaces have been shown to be a cause of considerable
problems, and therefore this rule is considered very important.
The recommended method of implementing function prototypes for external functions is to declare
the function (i.e. give the function prototype) in a header file, and then include the header file in
all those code files that need the prototype (see Rule 8.8).
The provision of a prototype for a function with internal linkage is a good programming practice.

Rule 8.2 (required):	 Whenever an object or function is declared or defined, its type
shall be explicitly stated.

extern x; /* Non-compliant - implicit int type */
extern int16_t x; /* Compliant - explicit type */
const y; /* Non-compliant - implicit int type */
const int16_t y; /* Compliant - explicit type */
static foo(void); /* Non-compliant - implicit type */
static int16_t foo(void); /* Compliant - explicit type */

Rule 8.3 (required):	 For each function parameter the type given in the declaration
and definition shall be identical, and the return types shall also
be identical.

[Undefined 24; Koenig 59–62]
The types of the parameters and return values in the prototype and the definition must match. This
requires identical types including typedef names and qualifiers, and not just identical base types.

Rule 8.4 (required):	 If objects or functions are declared more than once their types
shall be compatible.

[Undefined 10]
The definition of compatible types is lengthy and complex (ISO/IEC 9899:1990 [2], sections 6.1.2.6,
6.5.2, 6.5.3 and 6.5.4 give full details). Two identical types are compatible but two compatible
types need not be identical. For example, the following pairs of types are compatible:

signed int int
char [5] char []
unsigned short int unsigned short

Rule 8.5 (required)	 There shall be no definitions of objects or functions in a header
file.

Header files should be used to declare objects, functions, typedefs, and macros. Header files shall
not contain or produce definitions of objects or functions (or fragment of functions or objects)
that occupy storage. This makes it clear that only C files contain executable source code and that
header files only contain declarations. A “header file” is defined as any file that is included via the
#include directive, regardless of name or suffix.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

31

Rule 8.6 (required):	 Functions shall be declared at file scope.
[Undefined 36]

Declaring functions at block scope may be confusing, and can lead to undefined behaviour.

Rule 8.7 (required):	 Objects shall be defined at block scope if they are only accessed
from within a single function.

The scope of objects shall be restricted to functions where possible. File scope shall only be used
where objects need to have either internal or external linkage. Where objects are declared at file
scope Rule 8.10 applies. It is considered good practice to avoid making identifiers global except
where necessary. Whether objects are declared at the outermost or innermost block is largely a
matter of style. “Accessing” means using the identifier to read from, write to, or take the address
of the object.

Rule 8.8 (required):	 An external object or function shall be declared in one and only
one file.

[Koenig 66]
Normally this will mean declaring an external identifier in a header file, that will be included in
any file where the identifier is defined or used. For example:

extern int16_t a;

in featureX.h, then to define a:
#include <featureX.h>
int16_t a = 0;

There may be one or there may be many header files in a project, but each external object or
function shall only be declared in one header file.

Rule 8.9 (required):	 An identifier with external linkage shall have exactly one external
definition.

[Undefined 44; Koenig 55, 63–65]
Behaviour is undefined if an identifier is used for which multiple definitions exist (in different
files) or no definition exists at all. Multiple definitions in different files are not permitted even
if the definitions are the same, and it is obviously serious if they are different, or initialise the
identifier to different values.

Rule 8.10 (required):	 All declarations and definitions of objects or functions at file
scope shall have internal linkage unless external linkage is
required.

[Koenig 56, 57]
If a variable is only to be used by functions within the same file then use static. Similarly if a
function is only called from elsewhere within the same file, use static. Use of the static storage-
class specifier will ensure that the identifier is only visible in the file in which it is declared and
avoids any possibility of confusion with an identical identifier in another file or a library.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

32

Rule 8.11 (required):	 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

The static and extern storage class specifiers can be a source of confusion. It is good practice to apply
the static keyword consistently to all declarations of objects and functions with internal linkage.

Rule 8.12 (required):	 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialisation.

int array1[10]; /* Compliant */
extern int array2[]; /* Not compliant */
int array2[] = { 0, 10, 15 }; /* Compliant */

Although it is possible to declare an array of incomplete type and access its elements, it is safer to
do so when the size of the array may be explicitly determined.

Initialisation6.9	

Rule 9.1 (required):	 All automatic variables shall have been assigned a value before
being used.

[Undefined 41]
The intent of this rule is that all variables shall have been written to before they are read. This does
not necessarily require initialisation at declaration.
Note that according to the ISO C standard, variables with static storage duration are automatically
initialised to zero by default, unless explicitly initialised. In practice, many embedded environments
do not implement this behaviour. Static storage duration is a property of all variables declared
with the static storage class specifier, or with external linkage. Variables with automatic storage
duration are not usually automatically initialised.

Rule 9.2 (required):	 Braces shall be used to indicate and match the structure in the
non-zero initialisation of arrays and structures.

[Undefined 42]
ISO C requires initialiser lists for arrays, structures and union types to be enclosed in a single pair
of braces (though the behaviour if this is not done is undefined). The rule given here goes further
in requiring the use of additional braces to indicate nested structures. This forces the programmer
to explicitly consider and demonstrate the order in which elements of complex data types are
initialised (e.g. multi-dimensional arrays).
For example, below are two valid (in ISO C) ways of initialising the elements of a two dimensional
array, but the first does not adhere to the rule:

int16_t y[3][2] = { 1, 2, 3, 4, 5, 6 }; /* not compliant */
int16_t y[3][2] = { { 1, 2 }, { 3, 4 }, { 5, 6 } }; /* compliant */

A similar principle applies to structures, nested combinations of structures, arrays and other types.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

33

Note also that all the elements of arrays or structures can be initialised (to zero or NULL) by
giving an explicit initialiser for the first element only. If this method of initialisation is chosen then
the first element should be initialised to zero (or NULL), and nested braces need not be used.
The ISO standard [2] contains extensive examples of initialisation.
The intent of Rule 9.2 is that the non-zero initialisation of arrays and structures shall require an
explicit initialiser for each element, e.g.

int16_t arraya1[5] = { 1, 2, 3, 0, 0 };
 /* Compliant - non-zero initialisation */

int16_t arraya2[5] = { 0 };
 /* Compliant- zero initialisation */

int16_t arraya3[5] = { 1, 2, 3 };
 /* Not Compliant - non-zero initialisation */

int16_t arraya4[2][2] = { 0 };
 /* Compliant - zero initialisation at top-level */

int16_t arraya5[2][2] = { { 0 }, { 1, 2 }};
 /* Not Compliant - zero initialisation at sub-level */

Zero or NULL initialisation shall only be applied at the top level of the array or structure.

Rule 9.3 (required):	 In an enumerator list, the “=” construct shall not be used to
explicitly initialise members other than the first, unless all items
are explicitly initialised.

If an enumerator list is given with no explicit initialisation of members, then C allocates a sequence
of integers starting at 0 for the first element and increasing by 1 for each subsequent element.
An explicit initialisation of the first element, as permitted by the above rule, forces the allocation
of integers to start at the given value. When adopting this approach, it is essential to ensure that
the initialisation value used is small enough that no subsequent value in the list will exceed the int
storage used by enumeration constants.
Explicit initialisation of all items in the list, which is also permissible, prevents the mixing of
automatic and manual allocation, which is error prone. However, it is then the responsibility
of the programmer to ensure that all values are in the required range, and that values are not
unintentionally duplicated.

enum colour { red=3, blue, green, yellow=5 }; /* non compliant */
 /* green and yellow represent the same value - this is duplication */

enum colour { red=3, blue=4, green=5, yellow=5 }; /* compliant */
 /* green and yellow represent the same value - this is duplication */

Arithmetic type conversions6.10	

Implicit and explicit type conversions6.10.1	

The C language allows the programmer considerable freedom and will allow conversions between
different arithmetic types to be performed automatically. An explicit cast may be introduced for
functional reasons, for example:

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

34

To change the type in which a subsequent arithmetic operation is performed.•	
To truncate a value deliberately.•	
To make a type conversion explicit in the interests of clarity.•	

The insertion of a cast for purposes of clarification is often helpful, but when taken to excess, the
practice can lead to unreadable code. As demonstrated below, there are some implicit conversions
that can safely be ignored and others that cannot.

Types of implicit conversion6.10.2	

There are three particular categories of implicit type conversion that need to be distinguished.

Integral promotion conversions

Integral promotion describes a process whereby arithmetic operations are always conducted on
integer operands of type int or long (signed or unsigned). Operands of any other integer type, (char,
short, bit-field and enum) are always converted to type int or unsigned int before an arithmetic
operation. These types are referred to as small integer types.
The rules of integral promotion decree that in most arithmetic operations, an operand of a small
integer type be converted to an int if an int is able to represent all values of the original type;
otherwise the value is converted to unsigned int.
Notice that integral promotion:

is only applied to small integer types•	
is applied to operands of unary, binary and ternary operators•	
is not applied to the operands of the logical operators •	 &&, ||, !
is applied to the control expression of a switch statement.•	

Integral promotion is frequently confused with “balancing” of operands (described below). In
fact, integral promotion takes place in unary operations and it takes place in binary operations
where both operands are of the same type.
Because of integral promotion, the result of adding two objects of type unsigned short is always
a value of type signed int or unsigned int; in fact, the addition is performed in that type. It is
therefore possible for such an operation to derive a result whose value exceeds the size that could
be accommodated in the original type of the operands. For example, if the size of an int is 32 bits,
it is possible to multiply two objects of type short (16 bits) and derive a 32-bit result with no
danger of overflow. On the other hand, if the size of an int is only 16 bits, the product of two 16-bit
objects will only yield a 16-bit result and appropriate restrictions must be placed on the size of
the operands.

Integral promotion also applies to unary operators. For example, the result of applying a bitwise
negation operator (~) to an unsigned char operand is typically a negative value of type signed int.
Integral promotion is a fundamental inconsistency in the C language whereby the small integer
types behave differently from long and int types. The use of typedefs is a practice that is encouraged
in MISRA-C. However, because the behaviour of the various integer types is not consistent, it can

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

35

be unsafe to ignore the underlying base types (see description on following pages) unless some
restrictions are placed on the way in which expressions are constructed. It is the intention of the
following rules that the effects of integral promotion should be neutralised in order to avoid these
anomalies.

Assigning conversions

Assigning conversions occur when:
The type of an assignment expression is converted to the type of the assignment object.•	
The type of an initialiser expression is converted to the type of the initialised object.•	
The type of a function call argument is converted to the type of the formal parameter as •	
declared in the function prototype.
The type of the expression used in a return statement is converted to the type of the •	
function as declared in the function prototype.
The type of the constant expression in a •	 switch case label is converted to the promoted
type of the controlling expression. This conversion is performed only for the purposes of
comparison.

In each case, the value of an arithmetic expression is unconditionally converted, where necessary,
to another type.

Balancing conversions

Balancing conversions are described in the ISO C standard under the term “Usual Arithmetic
Conversions”. This is a set of rules which provides a mechanism to yield a common type when two
operands of a binary operator are balanced to a common type or the second and third arguments
of the conditional operator (… ? … : …) are balanced to a common type. Balancing conversions
always involve two operands of different type; one and sometimes both operands will be subject
to an implicit conversion.
The balancing rules are complicated by the process of integral promotion (described above) under
which any operand of a small integer type is first promoted to type int or unsigned int. Integral
promotion happens as part of the usual arithmetic conversions even when two operands are of
identical type.
The operators explicitly associated with balancing conversions are:

Multiplicative •	 *, /, %
Additive •	 +, -
Bitwise •	 &, ^, |
The conditional operator (… •	 ? … : …)
Relational operators •	 >, >=, <, <=
Equality operators •	 ==, !=

Most of these operators yield a result that is the type resulting from the balancing process. Relational
and equality operators are the exception in that they yield a Boolean value result of type int.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

36

Notice that the operands of the bitwise shift operators (<< and >>) are not balanced. The type of
the result is the promoted type of the first operand; the second operand may be of any signed or
unsigned integer type.

Dangerous type conversions6.10.3	

There are a number of potential dangers associated with type conversions that it is necessary to
avoid:

Loss of value•	 : Conversion to a type where the magnitude of the value cannot be
represented.
Loss of sign•	 : Conversion from a signed type to an unsigned type resulting in loss of sign.
Loss of precision•	 : Conversion from a floating type to an integer type with consequent loss
of precision.

The only type conversions that can be guaranteed safe for all data values and all possible conforming
implementations are:

Conversion of an integral value to a wider type of the same signedness.•	
Conversion of a floating type to a wider floating type.•	

Of course, in practice, if assumptions are about typical type sizes, it is possible to classify other
type conversions as safe. In general, MISRA-C:2004 adopts the principle that it is wise to identify
potentially dangerous type conversions by making the conversion explicit.
There are some other dangers in the area of type conversion that also need to be recognised. These
are issues that arise from areas of misunderstanding and difficulty in the C language rather than
because data values are not preserved.

Type widening in integral promotion•	 : The type in which integral expressions are
evaluated depends on the type of the operands after any integral promotion. It is always
possible to multiply two 8-bit values and access a 16-bit result if the magnitude requires it.
It is sometimes, but not always, possible to multiply two 16-bit values and retrieve a 32-bit
result. This is a dangerous inconsistency in the C language and in order to avoid confusion
it is safer never to rely on the widening type afforded by integral promotion. Consider the
following example:

uint16_t u16a = 40000; /* unsigned short / unsigned int ? */
uint16_t u16b = 30000; /* unsigned short / unsigned int ? */
uint32_t u32x; /* unsigned int / unsigned long ? */

u32x = u16a + u16b; /* u32x = 70000 or 4464 ? */

The expected result is presumably 70000, but the value assigned to u will in practice
depend on the implemented size of an int. If the implemented size of an int is 32 bits, the
addition will occur in 32-bit signed arithmetic and the correct value will be stored. If the
implemented size of an int is only 16 bits, the addition will take place in 16-bit unsigned
arithmetic, wraparound will occur and will yield the value 4464 (70000 % 65536).
Wraparound in unsigned arithmetic is well defined and may even be intended; but there is
potential for confusion.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

37

Evaluation type confusion•	 : A similar problem arises from a common misconception
among programmers that the type in which a calculation is conducted is influenced in
some way by the type to which the result is assigned or converted. For example, in the
following code the two 16-bit objects are added together in 16-bit arithmetic (unless
promoted to 32-bit int by integral promotion), and the result is converted to type uint32_t
on assignment.

u32x = u16a + u16b;

It is not unusual for programmers to be deceived into thinking that the addition is
performed in 32-bit arithmetic — because of the type of u32x.
Confusion of this nature is not confined to integer arithmetic or to implicit conversions.
The following examples demonstrate some statements in which the result is well defined
but the calculation may not be performed in the type that the programmer assumes.

u32a = (uint32_t)(u16a * u16b);
f64a = u16a / u16b;
f32a = (float32_t)(u16a / u16b);
f64a = f32a + f32b;
f64a = (float64_t)(f32a + f32b);

Change of signedness in arithmetic operations•	 : Integral promotion will often result in
two unsigned operands yielding a result of type (signed) int. For example, the addition
of two 16-bit unsigned operands will yield a signed 32-bit result if int is 32 bits but an
unsigned 16-bit result if int is 16 bits.
Change of signedness in bitwise operations•	 : Integral promotion can have some
particularly unfortunate repercussions when bitwise operators are applied to small
unsigned types. For example a bitwise complement operation on an operand of type
unsigned char will generally yield a result of type (signed) int with a negative value. The
operand is promoted to type int before the operation and the extra high order bits are set
by the complement process. The number of extra bits, if any, is dependent on the size of an
int and it is hazardous if the complement operation is followed by a right shift.

In order to avoid the perils associated with the issues described above, it is important to establish
some principles to constrain the way in which expressions are constructed. Firstly definitions of
some concepts are given.

Underlying type6.10.4	

The type of an expression refers to the type of the value obtained when the expression is evaluated.
When two items of type long are added, the expression has type long. Most arithmetic operators
derive a result whose type is dependent on the type of the operands. On the other hand, there are
some operators that yield a Boolean result of type int regardless of the type of the operands. So,
for example, when two items of type long are compared with a relational operator the expression
has type int.
The term “underlying type” is defined as describing the type that would be obtained from evaluating
an expression if it were not for the effects of integral promotion.
When two operands of type int are added the result is of type int and the expression may be said
to have type int.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

38

When two operands of type unsigned char are added the result is also (usually) of type int (because
of integral promotion), but the underlying type of the expression is defined to be unsigned char.
The term “underlying type” is not known in the C standard or in other texts on the C language but
is useful in describing some of the following rules. It describes a hypothetical departure from the
C language in which integral promotion does not exist and the usual arithmetic conversions are
applied consistently to all integer types. The concept is introduced because the effects of integral
promotion are subtle and sometimes dangerous. Integral promotion is an unavoidable feature
of the C language, but the intention of these rules is that the effect of integral promotion
should be neutralised by taking no advantage of the widening that occurs with small integer
operands.
Of course, the C standard does not explicitly define how small integer types would be balanced
to a common type in the absence of integral promotion although it does establish the value-
preserving principles.
When adding operands of type int, the programmer is obliged to ensure that the result of the
operation will not exceed a value that can be represented in type int. If he fails to do so, overflow
will occur and the results are undefined. It is the intention of the approach described here that the
same principle should apply when small integer operands are added; the programmer should ensure
that the result of adding two unsigned chars is representable in an unsigned char, even though
integral promotion could give rise to evaluation in a larger type. In other words the limitations of
the underlying type of an expression should be observed rather than the actual type.

Underlying type of an integer constant expression

One unfortunate aspect of the C language is that it is not possible to define an integer constant with
a char or short type. For example the value “5” can be expressed as a literal constant of type int,
unsigned int, long or unsigned long by the addition of a suitable suffix; but no suffix is available
to create a representation of the value in the various char or short types. This presents a difficulty
when attempting to maintain type consistency in expressions. If it is desired to assign a value to an
object of type unsigned char, then either an implicit type conversion from an integer type must be
tolerated or a cast must be introduced. Many would argue that to use a cast in such circumstances
serves only to reduce readability.
The same problem exists when constants are required in initialisers, function arguments or
arithmetic expressions. However the problem is largely a philosophical one associated with the
aspiration to observe principles of strong typing.
One way of addressing this problem is to imagine that an integer constant, an enumeration constant,
a character constant or an integer constant expression has a type appropriate to its magnitude. This
objective can be achieved by extending the concept of underlying type to integer constants and
imagining that, where possible, the literal constant has been derived by integral promotion from
an imaginary constant with a smaller underlying type.
The underlying type of an integer constant expression is therefore defined as follows:

If the actual type of the expression is 1.	 (signed) int, the underlying type is defined to be the
smallest signed integer type which is capable of representing its value.
If the actual type of the expression is 2.	 unsigned int, the underlying type is defined to be the
smallest unsigned integer type that is capable of representing its value.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

39

In all other circumstances, the underlying type of the expression is defined to be the same as 3.	
its actual type.

In a conventional architecture, the underlying type of an integer constant expression will be
determined according to its magnitude and signedness as follows:

Unsigned values

0U to 255U 8 bit unsigned

256U to 65535U 16 bit unsigned

65536U to 4294967295U 32 bit unsigned

Signed values

-2147483648 to -32769 32 bit signed

-32768 to -129 16 bit signed

-128 to 127 8 bit signed

128 to 32767 16 bit signed

32768 to 2147483647 32 bit signed

Notice that underlying type is an artificial concept. It does not in any way influence the type of
evaluation that is actually performed. The concept has been developed simply as a way of defining
a safe framework in which to construct arithmetic expressions.
Note: while in the ISO C language definition character constants have a type of int, MISRA C
considers the underlying type of a character constant to be plain char.

Complex expressions6.10.5	

The type conversion rules described in the following paragraphs refer in some places to the notion
of a “complex expression”. The term “complex expression” is defined to mean any expression
that is not:

a constant expression•	
an •	 lvalue (i.e. an object)
the return value of a function•	

The conversions that may be applied to complex expressions are restricted in order to avoid some
of the dangers outlined above. Specifically it is required that a sequence of arithmetic operations
in an expression should be conducted in the same type.
The following expressions are complex:

s8a + s8b
~u16a
u16a >> 2
foo(2) + u8a
*ppc + 1
++u8a

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

40

The following expressions are not complex, even though some contain complex sub-
expressions:

pc[u8a]
foo(u8a + u8b)
**ppuc
*(ppc + 1)
pcbuf[s16a * 2]

Implicit type conversions6.10.6	

Rule 10.1 (required):	 The value of an expression of integer type shall not be implicitly
converted to a different underlying type if:

it is not a conversion to a wider integer type of the same (a)	
signedness, or
the expression is complex, or(b)	
the expression is not constant and is a function argument, or(c)	
the expression is not constant and is a return expression(d)	

Rule 10.2 (required):	 The value of an expression of floating type shall not be implicitly
converted to a different type if:

it is not a conversion to a wider floating type, or(a)	
the expression is complex, or(b)	
the expression is a function argument, or(c)	
the expression is a return expression(d)	

Notice also that in describing integer conversions, the concern is always with underlying type
rather than actual type.
These two rules broadly encapsulate the following principles:

No implicit conversions between signed and unsigned types•	
No implicit conversions between integer and floating types•	
No implicit conversions from wider to narrower types•	
No implicit conversions of function arguments•	
No implicit conversions of function return expressions•	
No implicit conversions of complex expressions•	

The intention when restricting implicit conversion of complex expressions is to require that in
a sequence of arithmetic operations within an expression, all operations should be conducted in
exactly the same arithmetic type. Notice that this does not imply that all operands in an expression
are of the same type.
The expression u32a + u16b + u16c is compliant — both additions will notionally be performed
in type U32.
The expression u16a + u16b + u32c is not compliant — the first addition is notionally performed
in type U16 and the second in type U32.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

41

The word “notionally” is used because, in practice, the type in which arithmetic will be conducted
will depend on the implemented size of an int. By observing the principle whereby all operations
are performed in a consistent (underlying) type, it is possible to avoid programmer confusion and
some of the dangers associated with integral promotion.

extern void foo1(uint8_t x);

int16_t t1(void)

{

 ...

 foo1(u8a); /* compliant */
 foo1(u8a + u8b); /* compliant */
 foo1(s8a); /* not compliant */
 foo1(u16a); /* not compliant */
 foo1(2); /* not compliant */
 foo1(2U); /* compliant */
 foo1((uint8_t)2); /* compliant */
 ... s8a + u8a /* not compliant */
 ... s8a + (int8_t)u8a /* compliant */
 s8b = u8a; /* not compliant */
 ... u8a + 5 /* not compliant */
 ... u8a + 5U /* compliant */
 ... u8a + (uint8_t)5 /* compliant */
 u8a = u16a; /* not compliant */
 u8a = (uint8_t)u16a; /* compliant */
 u8a = 5UL; /* not compliant */
 ... u8a + 10UL /* compliant */
 u8a = 5U; /* compliant */
 ... u8a + 3 /* not compliant */
 ... u8a >> 3 /* compliant */
 ... u8a >> 3U /* compliant */
 pca = "P"; /* compliant */
 ... s32a + 80000 /* compliant */
 ... s32a + 80000L /* compliant */
 f32a = f64a; /* not compliant */
 f32a = 2.5; /* not compliant -
 unsuffixed floating
 constants are of type
 double */
 u8a = u8b + u8c; /* compliant */
 s16a = u8b + u8b; /* not compliant */
 s32a = u8b + u8c; /* not compliant */
 f32a = 2.5F; /* compliant */
 u8a = f32a; /* not compliant */
 s32a = 1.0; /* not compliant */
 s32a = u8b + u8c; /* not compliant */
 f32a = 2.5F; /* compliant */
 u8a = f32a; /* not compliant */
 s32a = 1.0; /* not compliant */
 f32a = 1; /* not compliant */
 f32a = s16a; /* not compliant */

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

42

 ... f32a + 1 /* not compliant */
 ... f64a * s32a /* not compliant */
 ...
 return (s32a); /* not compliant */
 ...
 return (s16a); /* compliant */
 ...

 return (20000); /* compliant */
 ...
 return (20000L); /* not compliant */
 ...
 return (s8a); /* not compliant */
 ...
 return (u16a); /* not compliant */
}

int16_t foo2(void)
{
 ...
 ... (u16a + u16b) + u32a /* not compliant */
 ... s32a + s8a + s8b /* compliant */
 ... s8a + s8b + s32a /* not compliant */
 f64a = f32a + f32b; /* not compliant */
 f64a = f64b + f32a; /* compliant */
 f64a = s32a / s32b; /* not compliant */
 u32a = u16a + u16a; /* not compliant */
 s16a = s8a; /* compliant */
 s16a = s16b + 20000; /* compliant */
 s32a = s16a + 20000; /* not compliant */
 s32a = s16a + (int32_t)20000; /* compliant */
 u16a = u16b + u8a; /* compliant */
 foo1(u16a); /* not compliant */
 foo1(u8a + u8b); /* compliant */
 ...
 return s16a; /* compliant */
 ...
 return s8a; /* not compliant */
}

Explicit conversions (casts)6.10.7	

Rule 10.3 (required):	 The value of a complex expression of integer type shall only be
cast to a type of the same signedness that is no wider than the
underlying type of the expression.

Rule 10.4 (required):	 The value of a complex expression of floating type shall only be
cast to a floating type that is narrower or of the same size.

If a cast is to be used on any complex expression, the type of cast that may be applied is severely
restricted. As explained in section 6.10, conversions on complex expressions are often a source of
confusion and it is therefore wise to be cautious. In order to comply with these rules,
it may be necessary to use a temporary variable and introduce an extra statement.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

43

... (float32_t)(f64a + f64b) /* compliant */

... (float64_t)(f32a + f32b) /* not compliant */

... (float64_t)f32a /* compliant */

... (float64_t)(s32a / s32b) /* not compliant */

... (float64_t)(s32a > s32b) /* not compliant */

... (float64_t)s32a / (float32_t)s32b /* compliant */

... (uint32_t)(u16a + u16b) /* not compliant */

... (uint32_t)u16a + u16b /* compliant */

... (uint32_t)u16a + (uint32_t)u16b /* compliant */

... (int16_t)(s32a - 12345) /* compliant */

... (uint8_t)(u16a * u16b) /* compliant */

... (uint16_t)(u8a * u8b) /* not compliant */

... (int16_t)(s32a * s32b) /* compliant */

... (int32_t)(s16a * s16b) /* not compliant */

... (uint16_t)(f64a + f64b) /* not compliant */

... (float32_t)(u16a + u16b) /* not compliant */

... (float64_t)foo1(u16a + u16b) /* compliant */

... (int32_t)buf16a[u16a + u16b] /* compliant */

Rule 10.5 (required):	 If the bitwise operators ~ and << are applied to an operand of
underlying type unsigned char or unsigned short, the result shall
be immediately cast to the underlying type of the operand.

When these operators (~ and <<) are applied to small integer types (unsigned char or unsigned
short), the operations are preceded by integral promotion, and the result may contain high order
bits which have not been anticipated. For example:

uint8_t port = 0x5aU;
uint8_t result_8;
uint16_t result_16;
uint16_t mode;

result_8 = (~port) >> 4; /* not compliant */

~port is 0xffa5 on a 16-bit machine but 0xffffffa5 on a 32-bit machine. In either case, the value
of result is 0xfa, but 0x0a may have been expected. This danger is avoided by inclusion of the
cast as shown below:

result_8 = ((uint8_t)(~port)) >> 4 ; /* compliant */
result_16 = ((uint16_t)(~(uint16_t)port)) >> 4 ; /* compliant */

A similar problem exists when the << operator is used on small integer types and high order bits
are retained. For example:

result_16 = ((port << 4) & mode) >> 6; /* not compliant */

The value in result_16 will depend on the implemented size of an int. Addition of a cast avoids
any ambiguity.

result_16 = ((uint16_t)((uint16_t)port << 4) & mode) >> 6;
 /* compliant */

No cast is required if the result of the bitwise operation is:
immediately assigned to an object of the same underlying type as the operand;(a) 	
used as a function argument of the same underlying type as the operand;(b) 	
used as a return expression of a function whose return type is of the same (c) 	
underlying type as the operand.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

44

Integer suffixes6.10.8	

Rule 10.6 (required):	 A “U” suffix shall be applied to all constants of unsigned type.

The type of an integer constant is a potential source of confusion, because it is dependent on a
complex combination of factors including:

The magnitude of the constant•	
The •	 implemented sizes of the integer types
The presence of any suffixes•	
The number base in which the value is expressed (i.e. decimal, octal or hexadecimal).•	

For example, the integer constant “40000” is of type int in a 32-bit environment but of type long
in a 16-bit environment. The value 0x8000 is of type unsigned int in a 16-bit environment, but of
type (signed) int in a 32-bit environment.
Note the following:

Any value with a “•	 U” suffix is of unsigned type
An unsuffixed decimal value less than 2•	 31 is of signed type

But:
An unsuffixed hexadecimal value greater than or equal to 2•	 15 may be of signed or unsigned
type
An unsuffixed decimal value greater than or equal to 2•	 31 may be of signed or unsigned type

Signedness of constants should be explicit. Consistent signedness is an important principle in
constructing well formed expressions. If a constant is of an unsigned type, it is helpful to avoid
ambiguity by applying a “U” suffix. When applied to larger values, the suffix may be redundant
(in the sense that it does not influence the type of the constant); however its presence is a valuable
contribution towards clarity.

Pointer type conversions6.11	
Pointer types can be classified as follows:

Pointer to object•	
Pointer to function•	
Pointer to •	 void
The null pointer constant (the value 0 cast to type •	 void *)

Conversions involving pointer types require an explicit cast except when:
The conversion is between a pointer to object and a pointer to •	 void and the destination
type carries all the type qualifiers of the source type.
A null pointer constant (•	 void *) is converted automatically to a particular pointer type
when it is assigned to or compared for equality with any type of pointer.

Only certain types of pointer conversion are defined in C and the behaviour of some
conversions is implementation defined.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

45

Rule 11.1 (required):	 Conversions shall not be performed between a pointer to a
function and any type other than an integral type.

[Undefined 27, 28]
Conversion of a function pointer to a different type of pointer results in undefined behaviour. This
means that a function pointer can be converted to or from an integral type. No other conversions
involving function pointers are permitted.

Rule 11.2 (required):	 Conversions shall not be performed between a pointer to object
and any type other than an integral type, another pointer to
object type or a pointer to void.

[Undefined 29]
Such conversions are undefined. This rule means that an object pointer can be converted to or
from:

An integral type;(a) 	
Another pointer to object type;(b) 	
A pointer to (c) 	 void.

No other conversions involving object pointers are permitted.

Rule 11.3 (advisory):	 A cast should not be performed between a pointer type and an
integral type.

[Implementation 24]
The size of integer that is required when a pointer is converted to an integer is implementation
defined. Casting between a pointer and an integer type should be avoided where possible, but may
be unavoidable when addressing memory mapped registers or other hardware specific features.

Rule 11.4 (advisory):	 A cast should not be performed between a pointer to object type
and a different pointer to object type.

Conversions of this type may be invalid if the new pointer type requires a stricter alignment.
uint8_t * p1;
uint32_t * p2;

p2 = (uint32_t *)p1; /* Incompatible alignment ? */

Rule 11.5 (required):	 A cast shall not be performed that removes any const or volatile
qualification from the type addressed by a pointer.

[Undefined 39, 40]
Any attempt to remove the qualification associated with the addressed type by using casting is a
violation of the principle of type qualification. Notice that the qualification referred to here is not
the same as any qualification that may be applied to the pointer itself.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

46

uint16_t x;
uint16_t * const cpi = &x; /* const pointer */
uint16_t * const * pcpi; /* pointer to const pointer */
const uint16_t * * ppci; /* pointer to pointer to const */
uint16_t * * ppi;
const uint16_t * pci; /* pointer to const */
volatile uint16_t * pvi; /* pointer to volatile */
uint16_t * pi;
...
pi = cpi; /* Compliant - no conversion
 no cast required */
pi = (uint16_t *)pci; /* Not compliant */
pi = (uint16_t *)pvi; /* Not compliant */
ppi = (uint16_t * *)pcpi; /* Not compliant */
ppi = (uint16_t * *)ppci; /* Not compliant */

Expressions6.12	

Rule 12.1 (advisory):	 Limited dependence should be placed on C’s operator
precedence rules in expressions.

In addition to the use of parentheses to override default operator precedence, parentheses should
also be used to emphasise it. It is easy to make a mistake with the rather complicated precedence
rules of C, and this approach helps to avoid such errors, and helps to make the code easier to read.
However, do not add too many parentheses so as to clutter the code and make it unreadable.
The following guidelines are suggested in deciding when parentheses are required:

no parentheses are required for the right-hand operand of an assignment operator unless •	
the right-hand side itself contains an assignment expression:

x = a + b; /* acceptable */
x = (a + b); /* () not required */

no parentheses are required for the operand of a unary operator:•	
x = a * -1; /* acceptable */
x = a * (-1); /* () not required */

otherwise, the operands of binary and ternary operators shall be •	 cast‑expressions (see
section 6.3.4 of ISO/IEC 9899:1990 [2]) unless all the operators in the expression are the
same.

x = a + b + c; /* acceptable, but care needed */
x = f (a + b, c); /* no () required for a + b */
x = (a == b) ? a : (a - b);
if (a && b && c) /* acceptable */
x = (a + b) - (c + d);
x = (a * 3) + c + d;
x = (uint16_t) a + b; /* no need for ((uint16_t) a) */

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

47

even if all operators are the same, parentheses may be used to control the order of •	
operation. Some operators (e.g. addition and multiplication) that are associative in
algebra are not necessarily associative in C. Similarly, integer operations involving mixed
types (prohibited by several rules) may produce different results because of the integral
promotions. The following example written for a 16‑bit implementation demonstrates
that addition is not associative and that it is important to be clear about the structure of an
expression:

uint16_t a = 10U;
uint16_t b = 65535U;
uint32_t c = 0U;
uint32_t d;

d = (a + b) + c; /* d is 9; a + b wraps modulo 65536 */
d = a + (b + c); /* d is 65545 */
/* this example also deviates from several other rules */

Note that Rule 12.5 is a special case of this rule applicable solely to the logical operators,
&& and ||.

Rule 12.2 (required):	 The value of an expression shall be the same under any order of
evaluation that the standard permits.

[Unspecified 7–9; Undefined 18]
Apart from a few operators (notably the function call operator (), &&, ||, ?: and , (comma))
the order in which sub-expressions are evaluated is unspecified and can vary. This means that
no reliance can be placed on the order of evaluation of sub-expressions, and in particular no
reliance can be placed on the order in which side effects occur. Those points in the evaluation of
an expression at which all previous side-effects can be guaranteed to have taken place are called
“sequence points”. Sequence points and side effects are described in sections 5.1.2.3, 6.3 and 6.6
of ISO/IEC 9899:1990 [2].
Note that the order of evaluation problem is not solved by the use of parentheses as this is not a
precedence issue.
The following notes give some guidance on how dependence on order of evaluation may occur,
and therefore may assist in adopting the rule.

increment or decrement operators•	

As an example of what can go wrong, consider
x = b[i] + i++;

This will give different results depending on whether b[i] is evaluated before i++ or vice
versa. The problem could be avoided by putting the increment operation in a separate
statement. The example would then become:

x = b[i] + i;
i++;

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

48

function arguments•	

The order of evaluation of function arguments is unspecified.
x = func(i++, i);

This will give different results depending on which of the function’s two parameters is
evaluated first.
function pointers•	

If a function is called via a function pointer there shall be no dependence on the order in
which function-designator and function arguments are evaluated.

p->task_start_fn (p++);

function calls•	

Functions may have additional effects when they are called (e.g. modifying some global
data). Dependence on order of evaluation could be avoided by invoking the function prior
to the expression that uses it, making use of a temporary variable for the value.
For example

x = f(a) + g(a);

could be written as
x = f(a);
x += g(a);

As an example of what can go wrong, consider an expression to get two values off a stack,
subtract the second from the first, and push the result back on the stack:

push(pop() - pop());

This will give different results depending on which of the pop() function calls is evaluated
first (because pop() has side-effects).
nested assignment statements•	

Assignments nested within expressions cause additional side effects. The best way to
avoid any chance of this leading to a dependence on order of evaluation is to not embed
assignments within expressions.
For example, the following is not recommended:

x = y = y = z / 3 ;
x = y = y++;

accessing a volatile•	

The volatile type qualifier is provided in C to denote objects whose value can change
independently of the execution of the program (for example an input register). If an object
of volatile qualified type is accessed this may change its value. C compilers will not
optimise out reads of a volatile. In addition, as far as a C program is concerned, a read of a
volatile has a side-effect (changing the value of the volatile).

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

49

It will usually be necessary to access volatile data as part of an expression, which then
means there may be dependence on order of evaluation. Where possible though, it is
recommended that volatiles only be accessed in simple assignment statements, such as the
following:

volatile uint16_t v;
/* ... */
x = v;

The rule addresses the order of evaluation problem with side effects. Note that there may also be
an issue with the number of times a sub-expression is evaluated, which is not covered by this rule.
This can be a problem with function invocations where the function is implemented as a macro.
For example, consider the following function-like macro and its invocation:

#define MAX(a, b) (((a) > (b)) ? (a) : (b))
/* ... */
z = MAX(i++, j);

The definition evaluates the first parameter twice if a > b but only once if a ≤ b. The macro
invocation may thus increment i either once or twice, depending on the values of i and j.
It should be noted that magnitude‑dependent effects, such as those due to floating-point rounding,
are also not addressed by this rule. Although the order in which side‑effects occur is undefined, the
result of an operation is otherwise well‑defined and is controlled by the structure of the expression.
In the following example, f1 and f2 are floating‑point variables; F3, F4 and F5 denote expressions
with floating‑point types.

f1 = F3 + (F4 + F5);
f2 = (F3 + F4) + F5;

The addition operations are, or at least appear to be, performed in the order determined by the
position of the parentheses, i.e. firstly F4 is added to F5 then secondly F3 is added to give the value
of f1. Provided that F3, F4 and F5 contain no side‑effects, their values are independent of the order
in which they are evaluated. However, the values assigned to f1 and f2 are not guaranteed to be
the same because floating‑point rounding following the addition operations will depend on the
values being added.

Rule 12.3 (required):	 The sizeof operator shall not be used on expressions that contain
side effects.

A possible programming error in C is to apply the sizeof operator to an expression and expect the
expression to be evaluated. However the expression is not evaluated: sizeof only acts on the type
of the expression. To avoid this error, sizeof shall not be used on expressions that contain side
effects, as the side effects will not occur. sizeof() shall only be applied to an operand which is a
type or an object. This may include volatile objects. For example:

int32_t i;
int32_t j;
j = sizeof(i = 1234);
 /* j is set to the sizeof the type of i which is an int */
 /* i is not set to 1234. */

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

50

Rule 12.4 (required):	 The right-hand operand of a logical && or || operator shall not
contain side effects.

There are some situations in C code where certain parts of expressions may not be evaluated. If
these sub-expressions contain side effects then those side effects may or may not occur, depending
on the values of other sub expressions.
The operators which can lead to this problem are &&, || and ?:. In the case of the first two (logical
operators) the evaluation of the right-hand operand is conditional on the value of the left-hand
operand. In the case of the ?: operator, either the second or third operands are evaluated but not
both. The conditional evaluation of the right-hand operand of one of the logical operators can
easily cause problems if the programmer relies on a side effect occurring. The ?: operator is
specifically provided to choose between two sub-expressions, and is therefore less likely to lead
to mistakes.
For example:

if (ishigh && (x == i++)) /* Not compliant */
if (ishigh && (x == f(x))) /* Only acceptable if f(x) is
 known to have no side effects */

The operations that cause side effects are described in section 5.1.2.3 of ISO/IEC 9899:1990 [2]
as accessing a volatile object, modifying an object, modifying a file, or calling a function that
does any of those operations, which cause changes in the state of the execution environment of
the calling function.

Rule 12.5 (required):	 The operands of a logical && or || shall be primary‑expressions.

“Primary expressions” are defined in ISO/IEC 9899:1990 [2], section 6.3.1. Essentially they are
either a single identifier, or a constant, or a parenthesised expression. The effect of this rule is to
require that if an operand is other than a single identifier or constant then it must be parenthesised.
Parentheses are important in this situation both for readability of code and for ensuring that the
behaviour is as the programmer intended. Where an expression consists of either a sequence of
only logical && or a sequence of only logical ||, extra parentheses are not required.
For example, write:

if ((x == 0) && ishigh) /* make x == 0 primary */
if (x || y || z) /* exception allowed,
 if x, y and z are Boolean */
if (x || (y && z)) /* make y && z primary */
if (x && (!y)) /* make !y primary */
if ((is_odd (y)) && x) /* make call primary */

Where an expression consists of either a sequence of only logical && or a sequence of only logical
||, extra parentheses are not required.

if ((x > c1) && (y > c2) && (z > c3)) /* Compliant */
if ((x > c1) && (y > c2) || (z > c3)) /* not compliant */
if ((x > c1) && ((y > c2) || (z > c3))) /* Compliant extra () used */

Note that this rule is a special case of Rule 12.1.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

51

Rule 12.6 (advisory):	 The operands of logical operators (&&, || and !) should be
effectively Boolean. Expressions that are effectively Boolean
should not be used as operands to operators other than (&&, ||, !,
=, ==, != and ?:).

[Koenig 48]
The logical operators &&, || and ! can be easily confused with the bitwise operators &, | and ~.
See “Boolean Expressions” in the glossary.

Rule 12.7 (required):	 Bitwise operators shall not be applied to operands whose
underlying type is signed.

[Implementation 17–19]
Bitwise operations (~, <<, <<=, >>, >>=, &, &=, ^, ^=, | and |=) are not normally meaningful on
signed integers. Problems can arise if, for example, a right shift moves the sign bit into the number,
or a left shift moves a numeric bit into the sign bit.
See section 6.10 for a description of underlying type.

Rule 12.8 (required):	 The right-hand operand of a shift operator shall lie between zero
and one less than the width in bits of the underlying type of the
left-hand operand.

[Undefined 32]
If, for example, the left-hand operand of a left-shift or right-shift is a 16-bit integer, then it is
important to ensure that this is shifted only by a number between 0 and 15 inclusive.
See section 6.10 for a description of underlying type.
There are various ways of ensuring this rule is followed. The simplest is for the right-hand operand
to be a constant (whose value can then be statically checked). Use of an unsigned integer type
will ensure that the operand is non-negative, so then only the upper limit needs to be checked
(dynamically at run time or by review). Otherwise both limits will need to be checked.

u8a = (uint8_t) (u8a << 7); /* compliant */
u8a = (uint8_t) (u8a << 9); /* not compliant */
u16a = (uint16_t)((uint16_t) u8a << 9); /* compliant */

Rule 12.9 (required):	 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

Applying the unary minus operator to an expression of type unsigned int or unsigned long generates
a result of type unsigned int or unsigned long respectively and is not a meaningful operation.
Applying unary minus to an operand of smaller unsigned integer type may generate a meaningful
signed result due to integral promotion, but this is not good practice.
See section 6.10 for a description of underlying type.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

52

Rule 12.10 (required):	 The comma operator shall not be used.

Use of the comma operator is generally detrimental to the readability of code, and the same effect
can be achieved by other means.

Rule 12.11 (advisory):	 Evaluation of constant unsigned integer expressions should not
lead to wrap-around.

Because unsigned integer expressions do not strictly overflow, but instead wrap around in a
modular way, any constant unsigned integer expressions which in effect “overflow” will not be
detected by the compiler. Although there may be good reasons at run‑time to rely on the modular
arithmetic provided by unsigned integer types, the reasons for using it at compile‑time to evaluate
a constant expression are less obvious. Any instance of an unsigned integer constant expression
wrapping around is therefore likely to indicate a programming error.
This rule applies equally to all phases of the translation process. Constant expressions that the
compiler chooses to evaluate at compile time are evaluated in such a way that the results are
identical to those that would be obtained by evaluation on the target with the exception of those
appearing in conditional preprocessing directives. For such directives, the usual rules of arithmetic
(see section 6.4 of ISO/IEC 9899:1990 [2]) apply but the int and unsigned int types behave instead
as if they were long and unsigned long respectively.
For example, on a machine with a 16‑bit int type and a 32‑bit long type:

#define START 0x8000
#define END 0xFFFF
#define LEN 0x8000

#if ((START + LEN) > END)
 #error Buffer Overrun
 /* OK because START and LEN are unsigned long */
#endif

#if (((END - START) - LEN) < 0)
 #error Buffer Overrun
 /* Not OK: subtraction result wraps around to 0xFFFFFFFF */
#endif

/* contrast the above START + LEN with the following */

if ((START + LEN) > END)
{
 error ("Buffer overrun");
 /* Not OK: START + LEN wraps around to 0x0000
 due to unsigned int arithmetic */
}

Rule 12.12 (required):	 The underlying bit representations of floating-point values shall
not be used.

[Unspecified 6; Implementation 20]
The storage layout used for floating-point values may vary from one compiler to another, and
therefore no floating-point manipulations shall be made which rely directly on the way the

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

53

values are stored. The in-built operators and functions, which hide the storage details from the
programmer, should be used.

Rule 12.13 (advisory):	 The increment (++) and decrement (--) operators should not be
mixed with other operators in an expression.

It is the intention of the rule that when the increment or decrement operator is used, it should be
the only side effect in the statement. The use of increment and decrement operators in combination
with other arithmetic operators is not recommended because:

It can significantly impair the readability of the code.•	
It introduces additional side effects into a statement with the potential for undefined •	
behaviour.

It is safer to use these operations in isolation from any other arithmetic operators.
For example a statement such as the following is not compliant:

u8a = ++u8b + u8c--; /* Not compliant */

The following sequence is clearer and therefore safer:
++u8b;
u8a = u8b + u8c;
u8c--;

Control statement expressions6.13	

Rule 13.1 (required):	 Assignment operators shall not be used in expressions that yield
a Boolean value.

[Koenig 6]
No assignments are permitted in any expression which is considered to have a Boolean value.
This precludes the use of both simple and compound assignment operators in the operands of
a Boolean‑valued expression. However, it does not preclude assigning a Boolean value to a
variable.
If assignments are required in the operands of a Boolean‑valued expression then they must be
performed separately outside of those operands. This helps to avoid getting “=” and “==” confused,
and assists the static detection of mistakes.
See “Boolean Expressions” in the glossary.
For example write:

x = y;
if (x != 0)
{
 foo();
}

and not:
if ((x = y) != 0) /* Boolean by context */
{
 foo();
}

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

54

or even worse:
if (x = y)
{
 foo();

}

Rule 13.2 (advisory):	 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean.

Where a data value is to be tested against zero then the test should be made explicit. The exception
to this rule is when data represents a Boolean value, even though in C this will in practice be an
integer. This rule is in the interests of clarity, and makes clear the distinction between integers and
logical values.
For example, if x is an integer, then:

if (x != 0) /* Correct way of testing x is non-zero */
if (y) /* Not compliant, unless y is effectively Boolean data
 (e.g. a flag) */

See “Boolean Expressions” in the glossary.

Rule 13.3 (required):	 Floating-point expressions shall not be tested for equality or
inequality.

The inherent nature of floating-point types is such that comparisons of equality will often not
evaluate to true even when they are expected to. In addition, the behaviour of such a comparison
cannot be predicted before execution, and may well vary from one implementation to another. For
example the result of the test in the following code is unpredictable:

float32_t x, y;
/* some calculations in here */
if (x == y) /* not compliant */
 { /* ... */ }
if (x == 0.0f) /* not compliant */

An indirect test is equally problematic and is also forbidden by this rule, for example:
if ((x <= y) && (x >= y))
 { /* ... */ }

The recommended method for achieving deterministic floating-point comparisons is to write
a library that implements the comparison operations. The library should take into account the
floating-point granularity (FLT_EPSILON) and the magnitude of the numbers being compared.
See also Rule 13.4 and Rule 20.3.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

55

Rule 13.4 (required):	 The controlling expression of a for statement shall not contain
any objects of floating type.

The controlling expression may include a loop counter, whose value is tested to determine
termination of the loop. Floating-point variables shall not be used for this purpose. Rounding
and truncation errors can be propagated through the iterations of the loop, causing significant
inaccuracies in the loop variable, and possibly giving unexpected results when the test is performed.
For example the number of times the loop is performed may vary from one implementation to
another, and may be unpredictable. See also Rule 13.3.

Rule 13.5 (required):	 The three expressions of a for statement shall be concerned only
with loop control.

The three expressions of a for statement shall be used only for these purposes:
First expression		 Initialising the loop counter (i in the following example)
Second expression		 Shall include testing the loop counter (i), and optionally other
				 loop control variables (flag)
Third expression		 Increment or decrement of the loop counter (i)

The following options are allowed:
All three expressions shall be present;(a) 	
The second and third expressions shall be present with prior initialisation of the loop (b) 	
counter;
All three expressions shall be empty for a deliberate infinite loop.(c) 	

Rule 13.6 (required):	 Numeric variables being used within a for loop for iteration
counting shall not be modified in the body of the loop.

Loop counters shall not be modified in the body of the loop. However other loop control variables
representing logical values may be modified in the loop, for example a flag to indicate that
something has been completed, which is then tested in the for statement.

flag = 1;
for (i = 0; (i < 5) && (flag == 1); i++)
{
 /* ... */
 flag = 0; /* Compliant - allows early termination of loop */
 i = i + 3; /* Not compliant - altering the loop counter */
}

Rule 13.7 (required):	 Boolean operations whose results are invariant shall not be
permitted.

If a Boolean operator yields a result that can be proven to be always “true” or always “false”, it is
highly likely that there is a programming error.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

56

enum ec {RED, BLUE, GREEN} col;
...
if (u16a < 0) /* Not compliant - u16a is always >= 0 */
...
if (u16a <= 0xffff) /* Not compliant - always true */
...
if (s8a < 130) /* Not compliant - always true */
...
if ((s8a < 10) && (s8a > 20)) /* Not compliant - always false */
...

if ((s8a < 10) || (s8a > 5)) /* Not compliant - always true */
...
if (col <= GREEN) /* Not compliant - always true */
...
if (s8a > 10)
{
 if (s8a > 5) /* Not compliant - s8a is not volatile */
 {
 }
}

Control flow6.14	

Rule 14.1 (required):	 There shall be no unreachable code.

This rule refers to code which cannot under any circumstances be reached, and which can be
identified as such at compile time. Code that can be reached but may never be executed is excluded
from the rule (e.g. defensive programming code).
A portion of code is unreachable if there is no control flow path from the relevant entry point to that
code. For example, unlabelled code following an unconditional control transfer is unreachable:

switch (event)
{
 case E_wakeup:
 do_wakeup();
 break; /* unconditional control transfer */
 do_more(); /* Not compliant - unreachable code */
 /* ... */
 default:
 /* ... */
 break;
}

A whole function will be unreachable if there is no means by which it can be called.
Code that is excluded by pre-processor directives is not present following pre-processing, and is
therefore not subject to this rule.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

57

Rule 14.2 (required):	 All non-null statements shall either:
have at least one side-effect however executed, or(a)	
cause control flow to change.(b)	

Any statement (other than a null statement) which has no side-effect and does not result in a
change of control flow will normally indicate a programming error, and therefore a static check
for such statements shall be performed. For example, the following statements do not necessarily
have side effects when executed:

/* assume uint16_t x;
 and uint16_t i; */
...
x >= 3u; /* not compliant: x is compared to 3,
 and the answer is discarded */

Note that “null statement” and “side effect” are defined in ISO/IEC 9899:1990 [2] sections 6.6.3
and 5.1.2.3 respectively.

Rule 14.3 (required):	 Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment provided that the first
character following the null statement is a white‑space character.

Null statements should not normally be deliberately included, but where they are used they shall
appear on a line by themselves. White‑space characters may precede the null statement to preserve
indentation. If a comment follows the null statement then at least one white‑space character shall
separate the null statement from the comment. The use of a white‑space character to separate the
null statement from any following comment is required because it provides an important visual cue
to reviewers. Following this rule enables a static checking tool to warn of null statements appearing
on a line with other text, which would normally indicate a programming error. For example:

while ((port & 0x80) == 0)
{
 ; /* wait for pin - Compliant */
 /* wait for pin */ ; /* Not compliant, comment before ; */
 ;/* wait for pin - Not compliant, no white-space char after ; */
}

Rule 14.4 (required):	 The goto statement shall not be used.

Rule 14.5 (required):	 The continue statement shall not be used.

Rule 14.6 (required):	 For any iteration statement there shall be at most one break
statement used for loop termination.

These rules are in the interests of good structured programming. One break statement is allowed
in a loop since this allows, for example, for dual outcome loops or for optimal coding.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

58

Rule 14.7 (required):	 A function shall have a single point of exit at the end of the
function.

[IEC 61508 Part 3 Table B.9]
This is required by IEC 61508, under good programming style.

Rule 14.8 (required):	 The statement forming the body of a switch, while, do … while or
for statement shall be a compound statement.

The statement that forms the body of a switch statement or a while, do … while or for loop, shall
be a compound statement (enclosed within braces), even if that compound statement contains a
single statement.
For example:

for (i = 0; i < N_ELEMENTS; ++i)
{
 buffer[i] = 0; /* Even a single statement must be in braces */
}

while (new_data_available)
 process_data (); /* Incorrectly not enclosed in braces */
 service_watchdog (); /* Added later but, despite the appearance
 (from the indent) it is actually not part of
 the body of the while statement, and is
 executed only after the loop has terminated */

Note that the layout for compound statements and their enclosing braces should be determined
from the style guidelines. The above is just an example.

Rule 14.9 (required):	 An if (expression) construct shall be followed by a compound
statement. The else keyword shall be followed by either a
compound statement, or another if statement.

[Koenig 24]
For example:

if (test1)
{
 x = 1; /* Even a single statement must be in braces */
}
else if (test2) /* No need for braces in else if */
{
 x = 0; /* Single statement must be in braces */
}
else
 x = 3; /* This was (incorrectly) not enclosed in braces */
 y = 2; /* This line was added later but, despite the
 appearance (from the indent), it is actually
 not part of the else, and is executed
 unconditionally */

Note that the layout for compound statements and their enclosing braces should be
determined from the style guidelines. The above is just an example.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

59

Rule 14.10 (required):	 All if … else if constructs shall be terminated with an else clause.

This rule applies whenever an if statement is followed by one or more else if statements; the final
else if shall be followed by an else statement. In the case of a simple if statement then the else
statement need not be included.
The requirement for a final else statement is defensive programming. The else statement shall
either take appropriate action or contain a suitable comment as to why no action is taken. This is
consistent with the requirement to have a final default clause in a switch statement (15.3).
For example this code is a simple if statement:

if (x < 0)
{
 log_error(3);
 x = 0;
} /* else not needed */

whereas the following code demonstrates an if, else if construct
if (x < 0)
{
 log_error(3);
 x = 0;
}
else if (y < 0)
{
 x = 3;
}

else /* this else clause is required, even if the */
{ /* programmer expects this will never be reached */
 /* no change in value of x */
}

Switch statements6.15	

Rule 15.0 (required):	 The MISRA C switch syntax shall be used.

The syntax for the switch statement in C is weak, allowing complex, unstructured behaviour.
The following text describes the syntax for switch statements as defined by MISRA-C and is
normative. This, and the associated rules, enforce a simple and consistent structure on to the
switch statement.
The following syntax rules are additional to the C standard syntax rules. All syntax rules not
defined below are as defined in the C standard.

switch-statement :
	 switch (expression) { case-label-clause-list default-label-clause}
case-label-clause-list:
	 case-label case-clauseopt
	 case-label-clause-list case-label case-clauseopt

case-label:
	 case constant-expression :

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

60

case-clause:
	 statement-listopt break ;
	 { declaration-listopt statement-listopt break ; }
default-label-clause :
	 default-label default-clause
default-label:
	 default :
default-clause:
	 case-clause
and
statement :
	 /* labelled_statement removed */
	 compound_statement
	 expression_statement
	 selection_statement
	 iteration_statement
	 /* jump_statement removed or just restricted to return depending on other rules */

The following terms are also used within the text of the rules:
switch label 	 Either a case label or default label.
case clause	 The code between any two switch labels.
default clause	 The code between the default label and the end of the switch statement.
switch clause	 Either a case clause or a default clause.

A switch statement shall only contain switch labels and switch clauses, and no other code.
Any deviation from this normative text shall be considered a non-compliance if there are no other
non-compliances with any other rule in section 15.

Rule 15.1 (required):	 A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement.

The scope of a case or default label shall be the compound statement, which is the body of a
switch statement. All case clauses and the default clause shall be at the same scope.

Rule 15.2 (required):	 An unconditional break statement shall terminate every
non‑empty switch clause.

[Koenig 22–24]
The last statement in every switch clause shall be a break statement, or if the switch clause
is a compound statement, then the last statement in the compound statement shall be a break
statement.

Rule 15.3 (required):	 The final clause of a switch statement shall be the default clause.

The requirement for a final default clause is defensive programming. This clause shall either take
appropriate action or contain a suitable comment as to why no action is taken.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

61

Rule 15.4 (required):	 A switch expression shall not represent a value that is effectively
Boolean.

See “Boolean expressions” in the glossary.
For example:

switch (x == 0) /* not compliant - effectively Boolean */
{
 ...

Rule 15.5 (required):	 Every switch statement shall have at least one case clause.

For example:
switch (x)
{
 uint8_t var; /* not compliant - decl before 1st case */
case 0:
 a = b;
 break; /* break is required here */
case 1: /* empty clause, break not required */
case 2:
 a = c; /* executed if x is 1 or 2 */
 if (a == b)
 {
 case 3: /* Not compliant - case is not allowed here */
 }
 break; /* break is required here */
case 4:
 a = b; /* Not compliant - non empty drop through */
case 5:
 a = c;
 break;
default: /* default clause is required */
 errorflag = 1; /* should be non-empty if possible */
 break; /* break is required here, in case a
 future modification turns this into a
 case clause */
}

Functions6.16	

Rule 16.1 (required):	 Functions shall not be defined with a variable number of
arguments.

[Unspecified 15; Undefined 25, 45, 61, 70–76]
There are a lot of potential problems with this feature. Users shall not write additional functions
that use a variable number of arguments. This precludes the use of use of stdarg.h, va_arg,
va_start and va_end.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

62

Rule 16.2 (required):	 Functions shall not call themselves, either directly or indirectly.

This means that recursive function calls cannot be used in safety-related systems. Recursion
carries with it the danger of exceeding available stack space, which can be a serious error. Unless
recursion is very tightly controlled, it is not possible to determine before execution what the
worst-case stack usage could be.

Rule 16.3 (required):	 Identifiers shall be given for all of the parameters in a function
prototype declaration.

Names shall be given for all the parameters in the function declaration for reasons of compatibility,
clarity and maintainability.

Rule 16.4 (required):	 The identifiers used in the declaration and definition of a
function shall be identical.

Rule 16.5 (required):	 Functions with no parameters shall be declared and defined with
the parameter list void.

 [Koenig 59–62]
Functions shall be declared with a return type (see Rule 8.2), that type being void if the function
does not return any data. Similarly, if the function has no parameters, the parameter list shall
be declared as void. Thus for example, a function, myfunc, which neither takes parameters nor
returns a value would be declared as:

void myfunc (void);

Rule 16.6 (required):	 The number of arguments passed to a function shall match the
number of parameters.

[Undefined 22]
This problem is completely avoided by the use of function prototypes — see Rule 8.1. This rule
is retained since compilers may not flag this constraint error.

Rule 16.7 (advisory):	 A pointer parameter in a function prototype should be declared
as pointer to const if the pointer is not used to modify the
addressed object.

This rule leads to greater precision in the definition of the function interface. The const qualification
should be applied to the object pointed to, not to the pointer, since it is the object itself that is being
protected.
For example:

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

63

void myfunc(int16_t * param1, const int16_t * param2, int16_t * param3)
/* param1: Addresses an object which is modified - no const
 param2: Addresses an object which is not modified - const required
 param3: Addresses an object which is not modified - const missing */
{
 *param1 = *param2 + *param3;
 return;
}
/* data at address param3 has not been changed,
 but this is not const therefore not compliant */

Rule 16.8 (required):	 All exit paths from a function with non-void return type shall
have an explicit return statement with an expression.

[Undefined 43]
This expression gives the value that the function returns. The absence of a return with an expression
leads to undefined behaviour (and the compiler may not give an error).

Rule 16.9 (required):	 A function identifier shall only be used with either a preceding &,
or with a parenthesised parameter list, which may be empty.

[Koenig 24]
If the programmer writes:

if (f) /* not compliant - gives a constant non-zero value which is
 the address of f - use either f() or &f */
{
 /* ... */
}

then it is not clear if the intent is to test if the address of the function is not NULL or that a call to
the function f() should be made.

Rule 16.10 (required):	 If a function returns error information, then that error
information shall be tested.

A function (whether it is part of the standard library, a third party library or a user defined function)
may provide some means of indicating the occurrence of an error. This may be via an error flag, some
special return value or some other means. Whenever such a mechanism is provided by a function
the calling program shall check for the indication of an error as soon as the function returns.
However, note that the checking of input values to functions is considered a more robust means
of error prevention than trying to detect errors after the function has completed (see Rule 20.3).
Note also that the use of errno (to return error information from functions) is clumsy and should
be used with care (see Rule 20.5).

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

64

Pointers and arrays6.17	

Rule 17.1 (required): 	 Pointer arithmetic shall only be applied to pointers that address
an array or array element.

[Undefined 30]
Addition and subtraction of integers (including increment and decrement) from pointers that do
not point to an array or array element results in undefined behaviour.

Rule 17.2 (required): 	 Pointer subtraction shall only be applied to pointers that address
elements of the same array.

[Undefined 31]
Subtraction of pointers only gives well‑defined results if the two pointers point (or at least behave
as if they point) into the same array object.

Rule 17.3 (required):	 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

[Undefined 33]
Attempting to make comparisons between pointers will produce undefined behaviour if the two
pointers do not point to the same object. Note: it is permissible to address the next element beyond
the end of an array, but accessing this element is not allowed.

Rule 17.4 (required):	 Array indexing shall be the only allowed form of pointer
arithmetic.

Array indexing is the only acceptable form of pointer arithmetic, because it is clearer and hence
less error prone than pointer manipulation. This rule bans the explicit calculation of pointer values.
Array indexing shall only be applied to objects defined as an array type. Any explicitly calculated
pointer value has the potential to access unintended or invalid memory addresses. Pointers may
go out of bounds of arrays or structures, or may even point to effectively arbitrary locations. See
also Rule 21.1.

void my_fn(uint8_t * p1, uint8_t p2[])
{
 uint8_t index = 0U;
 uint8_t * p3;
 uint8_t * p4;

 *p1 = 0U;
 p1 ++; /* not compliant - pointer increment */
 p1 = p1 + 5; /* not compliant - pointer increment */
 p1[5] = 0U; /* not compliant - p1 was not declared as an array */
 p3 = &p1[5]; /* not compliant - p1 was not declared as an array */
 p2[0] = 0U;
 index ++;
 index = index + 5U;
 p2[index] = 0U; /* compliant */
 p4 = &p2[5]; /* compliant
*/
}

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

65

uint8_t a1[16];
uint8_t a2[16];

my_fn(a1, a2);

my_fn(&a1[4], &a2[4]);

uint8_t a[10];
uint8_t * p;

p = a;
(p+5) = 0U; / not compliant */
p[5] = 0U; /* not compliant */

Rule 17.5 (advisory):	 The declaration of objects should contain no more than 2 levels
of pointer indirection.

Use of more than 2 levels of indirection can seriously impair the ability to understand the behaviour
of the code, and should therefore be avoided.

typedef int8_t * INTPTR;

struct s {
 int8_t * s1; /* compliant */
 int8_t ** s2; /* compliant */
 int8_t *** s3; /* not compliant */
};

struct s * ps1; /* compliant */
struct s ** ps2; /* compliant */
struct s *** ps3; /* not compliant */

int8_t ** (*pfunc1)(); /* compliant */
int8_t ** (**pfunc2)(); /* compliant */
int8_t ** (***pfunc3)(); /* not compliant */
int8_t *** (**pfunc4)(); /* not compliant */

void function(int8_t * par1,
 int8_t ** par2,
 int8_t *** par3, /* not compliant */
 INTPTR * par4,
 INTPTR * const * const par5, /* not compliant */
 int8_t * par6[],
 int8_t ** par7[]) /* not compliant */
{
 int8_t * ptr1;
 int8_t ** ptr2;
 int8_t *** ptr3; /* not compliant */
 INTPTR * ptr4;
 INTPTR * const * const ptr5; /* not compliant */
 int8_t * ptr6[10];
 int8_t ** ptr7[10];
}

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

66

Explanation of types:
par1•	 and ptr1 are of type pointer to int8_t.
par2•	 and ptr2 are of type pointer to pointer to int8_t.
par3•	 and ptr3 are of type pointer to a pointer to a pointer to int8_t. This is three levels and
is not compliant.
par4•	 and ptr4 are expanded to a type of pointer to a pointer to int8_t.
par5•	 and ptr5 are expanded to a type of const pointer to a const pointer to a pointer to
int8_t. This is three levels and is not compliant.
par6•	 is of type pointer to pointer to int8_t because arrays are converted to a pointer to the
initial element of the array.
ptr6•	 is of type pointer to array of int8_t.
par7•	 is of type pointer to pointer to pointer to int8_t because arrays are converted to a
pointer to the initial element of the array. This is three levels and is not compliant.
ptr7•	 is of type array of pointer to pointer to int8_t. This is compliant.

Rule 17.6 (required):	 The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object
has ceased to exist.

[Undefined 9, 26]
If the address of an automatic object is assigned to another automatic object of larger scope, or to
a static object, or returned from a function then the object containing the address may exist beyond
the time when the original object ceases to exist (and its address becomes invalid).
For example

int8_t * foobar(void)
{
 int8_t local_auto;
 return (&local_auto); /* not compliant */
}

Structures and unions6.18	

Rule 18.1 (required):	 All structure and union types shall be complete at the end of a
translation unit.

[Undefined 35]
A complete declaration of the structure or union shall be included within any translation unit that reads
from or writes to that structure. A pointer to an incomplete type is itself complete and is permitted,
and therefore the use of opaque pointers is permitted. See section 6.1.2.5 of ISO/IEC 9899:1990 [2]
for a full description of incomplete types.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

67

struct tnode * pt; /* tnode is incomplete at this point */

struct tnode
{
 int count;
 struct tnode *left;
 struct tnode * right;
}; /* type tnode is now complete */

Rule 18.2 (required):	 An object shall not be assigned to an overlapping object.
[Undefined 34, 55]

The behaviour is undefined when two objects are created which have some overlap in memory
and one is copied to the other.

Rule 18.3 (required)	 An area of memory shall not be reused for unrelated purposes.

This rule refers to the technique of using memory to store some data, and then using the same
memory to store unrelated data at some other time during the execution of the program. Clearly
it relies on the two different pieces of data existing at disjoint periods of the program’s execution,
and never being required simultaneously.
This practice is not recommended for safety-related systems as it brings with it a number of
dangers. For example: a program might try to access data of one type from the location when
actually it is storing a value of the other type (e.g. due to an interrupt). The two types of data
may align differently in the storage, and encroach upon other data. Therefore the data may not
be correctly initialised every time the usage switches. The practice is particularly dangerous in
concurrent systems.
However it is recognised that sometimes such storage sharing may be required for reasons of
efficiency. Where this is the case it is essential that measures are taken to ensure that the wrong
type of data can never be accessed, that data is always properly initialised and that it is not possible
to access parts of other data (e.g. due to alignment differences). The measures taken shall be
documented and justified in the deviation that is raised against this rule.
This might be achieved by the use of unions, or various other means.
Note that there is no intention in the MISRA-C guidelines to place restrictions on how a compiler
actually translates source code as the user generally has no effective control over this. So for
example, memory allocation within the compiler whether dynamic heap, dynamic stack or static,
may vary significantly with only slight code changes even at the same level of optimisation. (Note
also that some optimisation may legitimately take place even when the user makes no specific
request for this.)

Rule 18.4 (required):	 Unions shall not be used.
[Implementation 27]

Rule 18.3 prohibits the reuse of memory areas for unrelated purposes. However, even when
memory is being reused for related purposes, there is still a risk that the data may be misinterpreted.
Therefore, this rule prohibits the use of unions for any purpose.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

68

It is recognised nonetheless that there are situations in which the careful use of unions is desirable in
constructing an efficient implementation. In such situations, deviations to this rule are considered
acceptable provided that all relevant implementation‑defined behaviour is documented. This might
be achieved in practice by referencing the implementation section of the compiler manuals from
the design documentation. The kinds of implementation behaviour that might be relevant are:

padding — how much padding is inserted at the end of the union•	
alignment — how are members of any structures within the union aligned•	
endianness — is the most significant byte of a word stored at the lowest or highest •	
memory address
bit-order — how are bits numbered within bytes and how are bits allocated to bit fields•	

The use of deviations is acceptable for (a) packing and unpacking of data, for example when
sending and receiving messages, and (b) implementing variant records provided that the variants
are differentiated by a common field. Variant records without a differentiator are not considered
suitable for use in any situation.

Packing and unpacking data

In this example, a union is used to access the bytes of a 32-bit word in order to store bytes received
over a network most-significant byte first. The assumptions that this particular implementation
rely on are:

the •	 uint32_t type occupies 32 bits
the •	 uint8_t type occupies 8 bits
the implementation stores words with the most significant byte at the lowest memory •	
address

The code to implement the receipt and packing of the bytes could be:
typedef union {
 uint32_t word;
 uint8_t bytes[4];
} word_msg_t;

uint32_t read_word_big_endian (void)

{
 word_msg_t tmp;

 tmp.bytes[0] = read_byte();
 tmp.bytes[1] = read_byte();
 tmp.bytes[2] = read_byte();
 tmp.bytes[3] = read_byte();

 return (tmp.word);
}

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

69

It is worth noting that the body of the routine could be written in a portable manner as follows:
uint32_t read_word_big_endian (void)
{
 uint32_t word;

 word = ((uint32_t)read_byte()) << 24;
 word = word | (((uint32_t)read_byte()) << 16);
 word = word | (((uint32_t)read_byte()) << 8);
 word = word | ((uint32_t)read_byte());

 return (word);
}

Unfortunately, most compilers produce far less efficient code when faced with the portable
implementation. When high execution speed or low program memory usage is more important
than portability, the implementation using unions might be preferred.

Variant records

Unions are often used to implement variant records. Each variant shares common fields and has
additional fields that are specific to the variant. This example is based on the CAN Calibration
Protocol (CCP), in which each CAN message sent to a CCP client shares two common fields,
each of one byte. Up to 6 additional bytes may follow, the interpretation of which depends on the
message type stored in the first byte.
The assumptions that this particular implementation rely on are:

the •	 uint16_t type occupies 16 bits
the •	 uint8_t type occupies 8 bits
the alignment and packing rules are such that there is no gap between the •	 uint8_t and
uint16_t members of the structure

In the interests of brevity, only two message types are considered in this example. The code that
is presented here is incomplete and should be viewed merely to illustrate the purpose of variant
records and not as a model implementation of CCP.

/* The fields common to all CCP messages */
typedef struct {
 uint8_t msg_type;
 uint8_t sequence_no;
} ccp_common_t;

/* CCP connect message */
typedef struct {
 ccp_common_t common_part;
 uint16_t station_to_connect;
} ccp_connect_t;

/* CCP disconnect message */
typedef struct {
 ccp_common_t common_part;
 uint8_t disconnect_command;
 uint8_t pad;
 uint16_t station_to_disconnect;
} ccp_disconnect_t;

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

70

/* The variant */
typedef union {
 ccp_common_t common;
 ccp_connect_t connect;
 ccp_disconnect_t disconnect;
} ccp_message_t;

void process_ccp_message (ccp_message_t *msg)
{
 switch (msg->common.msg_type)
 {
 case Ccp_connect:
 if (MY_STATION == msg->connect.station_to_connect)
 {
 ccp_connect ();
 }
 break;

 case Ccp_disconnect:
 if (MY_STATION == msg->disconnect.station_to_disconnect)
 {
 if (PERM_DISCONNECT == msg->disconnect.disconnect_command)
 {
 ccp_disconnect ();
 }
 }
 break;

 default:
 break; /* ignore unknown commands */
 }
}

Preprocessing directives6.19	

Rule 19.1 (advisory):	 #include statements in a file should only be preceded by other
preprocessor directives or comments.

All the #include statements in a particular code file should be grouped together near the head
of the file. The rule states that the only items which may precede a #include in a file are other
preprocessor directives or comments.

Rule 19.2 (advisory):	 Non-standard characters should not occur in header file names in
#include directives.

[Undefined 14]
If the ', \, ", or /* characters are used between < and > delimiters or the ', \, or /* characters
are used between the " delimiters in a header name preprocessing token, then the behaviour is
undefined. Use of the \ character is permitted in filename paths without the need for a deviation if
required by the host operating system of the development environment.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

71

Rule 19.3 (required):	 The #include directive shall be followed by either a <filename> or
"filename" sequence.

[Undefined 48]
For example, the following are allowed.

#include "filename.h"
#include <filename.h>
#define FILE_A "filename.h"
#include FILE_A

Rule 19.4 (required):	 C macros shall only expand to a braced initialiser, a constant,
a string literal, a parenthesised expression, a type qualifier, a
storage class specifier, or a do-while-zero construct.

[Koenig 82–84]
These are the only permitted uses of macros. Storage class specifiers and type qualifiers include
keywords such as extern, static and const. Any other use of #define could lead to unexpected
behaviour when substitution is made, or to very hard-to-read code.
In particular macros shall not be used to define statements or parts of statements except the use
of the do-while construct. Nor shall macros redefine the syntax of the language. All brackets of
whatever type () { } [] in the macro replacement list shall be balanced.
The do-while-zero construct (see example below) is the only permitted mechanism for having
complete statements in a macro body. The do-while-zero construct is used to wrap a series of one
or more statements and ensure correct behaviour. Note: the semicolon must be omitted from the
end of the macro body.
For example:

/* The following are compliant */
#define PI 3.14159F /* Constant */
#define XSTAL 10000000 /* Constant */
#define CLOCK (XSTAL/16) /* Constant expression */
#define PLUS2(X) ((X) + 2) /* Macro expanding to expression */
#define STOR extern /* storage class specifier */
#define INIT(value){ (value), 0, 0} /* braced initialiser */
#define CAT (PI) /* parenthesised expression */
#define FILE_A "filename.h" /* string literal */
#define READ_TIME_32() \
 do { \
 DISABLE_INTERRUPTS (); \
 time_now = (uint32_t)TIMER_HI << 16; \
 time_now = time_now | (uint32_t)TIMER_LO; \
 ENABLE_INTERRUPTS (); \
 } while (0) /* example of do-while-zero */

/* the following are NOT compliant */
#define int32_t long /* use typedef instead */
#define STARTIF if(/* unbalanced () and language redefinition */
#define CAT PI /* non-parenthesised expression */

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

72

Rule 19.5 (required):	 Macros shall not be #define’d or #undef’d within a block.

While it is legal C to place #define or #undef directives anywhere in a code file, placing them
inside blocks is misleading as it implies a scope restricted to that block, which is not the case.
Normally, #define directives will be placed near the start of a file, before the first function definition.
Normally, #undef directives will not be needed (see Rule 19.6).

Rule 19.6 (required):	 #undef shall not be used.

#undef should not normally be needed. Its use can lead to confusion with respect to the existence
or meaning of a macro when it is used in the code.

Rule 19.7 (advisory):	 A function should be used in preference to a function-like macro.
[Koenig 78–81]

While macros can provide a speed advantage over functions, functions provide a safer and more
robust mechanism. This is particularly true with respect to the type checking of parameters, and
the problem of function-like macros potentially evaluating parameters multiple times.

Rule 19.8 (required):	 A function-like macro shall not be invoked without all of its
arguments.

[Undefined 49]
This is a constraint error, but preprocessors have been known to ignore this problem. Each
argument in a function-like macro must consist of at least one preprocessing token otherwise the
behaviour is undefined.

Rule 19.9 (required):	 Arguments to a function-like macro shall not contain tokens that
look like preprocessing directives.

[Undefined 50]
If any of the arguments act like preprocessor directives, the behaviour when macro substitution is
made can be unpredictable.

Rule 19.10 (required):	 In the definition of a function-like macro each instance of a
parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##.

[Koenig 78–81]
Within a definition of a function-like macro, the arguments shall be enclosed in parentheses. For
example define an abs function using:

#define abs(x) (((x) >= 0) ? (x) : -(x))

and not:
#define abs(x) ((x >= 0) ? x : -x)

If this rule is not adhered to then when the preprocessor substitutes the macro into the code the
operator precedence may not give the desired results.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

73

Consider what happens if the second, incorrect, definition is substituted into the expression:
z = abs(a - b);

giving:
z = ((a - b >= 0) ? a - b : -a - b);

The sub-expression -a - b is equivalent to (-a)-b rather than -(a-b) as intended. Putting all the
parameters in parentheses in the macro definition avoids this problem.

Rule 19.11 (required):	 All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives
and the defined() operator.

If an attempt is made to use an identifier in a preprocessor directive, and that identifier has not
been defined, the preprocessor will sometimes not give any warning but will assume the value
zero. #ifdef, #ifndef and defined() are provided to test the existence of a macro, and are therefore
excluded.
For example:

#if x < 0 /* x assumed to be zero if not defined */

Consideration should be given to the use of a #ifdef test before an identifier is used.
Note that preprocessing identifiers may be defined either by use of #define directives or by options
specified at compiler invocation. However the use of the #define directive is preferred.

Rule 19.12 (required):	 There shall be at most one occurrence of the # or ## operators in
a single macro definition.

 [Unspecified 12]
There is an issue of unspecified order of evaluation associated with the # and ## preprocessor
operators. To avoid this problem only one occurrence of either operator shall be used in any single
macro definition (i.e. one #, or one ## or neither).

Rule 19.13 (advisory):	 The # and ## operators should not be used.
[Unspecified 12]

There is an issue of unspecified order of evaluation associated with the # and ## preprocessor
operators. Compilers have been inconsistent in the implementation of these operators. To avoid
these problems do not use them.

Rule 19.14 (required):	 The defined preprocessor operator shall only be used in one of
the two standard forms.

[Undefined 47]
The only two permissible forms for the defined preprocessor operator are:

defined (identifier)
defined identifier

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

74

Any other form leads to undefined behaviour, for example:
#if defined(X > Y) /* not compliant - undefined behaviour */

Generation of the token defined during expansion of a #if or #elif preprocessing directive also
leads to undefined behaviour and shall be avoided, for example:

#define DEFINED defined
#if DEFINED(X) /* not compliant - undefined behaviour */

Rule 19.15 (required):	 Precautions shall be taken in order to prevent the contents of a
header file being included twice.

When a translation unit contains a complex hierarchy of nested header files it can happen that a
particular header file is included more than once. This can be, at best, a source of confusion. If it
leads to multiple or conflicting definitions, the result can be undefined or erroneous behaviour.
Multiple inclusions of a header file can sometimes be avoided by careful design. If this is not
possible, a mechanism must be in place to prevent the file contents from being included more than
once. A common approach is to associate a macro with each file; the macro is defined when the
file is included for the first time and used subsequently when the file is included again to exclude
the contents of the file.
For example a file called “ahdr.h” might be structured as follows:

#ifndef AHDR_H
#define AHDR_H

/* The following lines will be excluded by the
 preprocessor if the file is included more
 than once */

...

#endif

Alternatively, the following may be used:
#ifdef AHDR_H
#error Header file is already included
#else
#define AHDR_H

/* The following lines will be excluded by the
 preprocessor if the file is included more
 than once */

...

#endif

Rule 19.16 (required):	 Preprocessing directives shall be syntactically meaningful even
when excluded by the preprocessor.

When a section of source code is excluded by preprocessor directives, the content of each excluded
statement is ignored until a #else, #elif or #endif directive is encountered (depending on the
context). If one of these excluded directives is badly formed, it may be ignored without warning
by a compiler with unfortunate consequences.
The requirement of this rule is that all preprocessor directives shall be syntactically

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

75

valid even when they occur within an excluded block of code.
In particular, ensure that #else and #endif directives are not followed by any characters other than
white-space. Compilers are not always consistent in enforcing this ISO requirement.

#define AAA 2
...
int foo(void)
{
 int x = 0;
 ...
#ifndef AAA
 x = 1;
#else1 /* Not compliant */
 x = AAA;
#endif
 ...
 return x;
}

Rule 19.17 (required): 	 All #else, #elif and #endif preprocessor directives shall reside
in the same file as the #if or #ifdef directive to which they are
related.

When the inclusion and exclusion of blocks of statements is controlled by a series of preprocessor
directives, confusion can arise if all of the relevant directives do not occur within one file. This
rule requires that all preprocessor directives in a sequence of the form #if / #ifdef ... #elif ... #else
... #endif shall reside in the same file. Observance of this rule preserves good code structure and
avoids maintenance problems.
Notice that this does not preclude the possibility that such directives may exist within included
files so long as all directives that relate to the same sequence are located in one file.

file.c
#define A
...
#ifdef A
...
#include "file1.h"

#endif
...
#if 1
#include "file2.h"
...
EOF

file1.h
#if 1
...
#endif /* Compliant */
EOF

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

76

file2.h
...
#endif /* Not compliant */

Standard libraries6.20	

Rule 20.1 (required):	 Reserved identifiers, macros and functions in the standard
library, shall not be defined, redefined or undefined.

[Undefined 54, 57, 58, 62]
It is generally bad practice to #undef a macro which is defined in the standard library. It is also
bad practice to #define a macro name which is a C reserved identifier, a C keyword or the name
of any macro, object or function in the standard library. For example, there are some specific
reserved words and function names which are known to give rise to undefined behaviour if they
are redefined or undefined, including defined, _ _LINE_ _, _ _FILE_ _, _ _DATE_ _, _ _TIME_ _,
_ _STDC_ _, errno and assert.
See also Rule 19.6 regarding the use of #undef.
Reserved identifiers are defined by ISO/IEC 9899:1990 [2] Sections 7.1.3 “Reserved identifiers”
and 6.8.8 “Predefined macro names”. Macros in the standard library are examples of reserved
identifiers. Functions in the standard library are examples of reserved identifiers. Any identifier in
the standard library is considered a reserved identifier in any context i.e. at any scope or regardless
of header files.
The defining, redefining or undefining of the reserved identifiers defined in 7.13 “Future library
directions” is advisory.
Rule 20.1 applies regardless of which, if any, header files are included.

Rule 20.2 (required):	 The names of standard library macros, objects and functions
shall not be reused.

Where new versions of standard library macros, objects or functions are used by the programmer
(e.g. enhanced functionality or checks of input values) the modified macro, object or function
shall have a new name. This is to avoid any confusion as to whether a standard macro, object
or function is being used or whether a modified version of that function is being used. So, for
example, if a new version of the sqrt function is written to check that the input is not negative, the
new function shall not be named “sqrt” but shall be given a new name.

Rule 20.3 (required):	 The validity of values passed to library functions shall be
checked.

[Undefined 60, 63; Implementation 45, 47]
Many functions in the standard C libraries are not required by the ISO standard [2] to check the
validity of parameters passed to them. Even where checking is required by the standard, or where
compiler writers claim to check parameters, there is no guarantee that adequate checking will take
place. Therefore the programmer shall provide appropriate checks of input values for all library

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

77

functions which have a restricted input domain (standard libraries, other bought in libraries, and
in-house libraries).
Examples of functions that have a restricted domain and need checking are:

many of the maths functions in •	 math.h, for example:
negative numbers must not be passed to the –– sqrt or log functions;
the second parameter of –– fmod should not be zero

toupper•	 and tolower: some implementations can produce unexpected results when the
function toupper is passed a parameter which is not a lower case letter (and similarly for
tolower)
the character testing functions in •	 ctype.h exhibit undefined behaviour if passed invalid
values.
the •	 abs function applied to the most negative integer gives undefined behaviour.

Although most of the math library functions in math.h define allowed input domains, the values
they return when a domain error occurs may vary from one compiler to another. Therefore pre-
checking the validity of the input values is particularly important for these functions.
The programmer should identify any domain constraints which should sensibly apply to a function
being used (which may or may not be documented in the standard), and provide appropriate checks
that the input value(s) lies within this domain. Of course, the value may be restricted further, if
required, by knowledge of what the parameter represents and what constitutes a sensible range of
values for the parameter.
There are a number of ways in which the requirements of this rule might be satisfied, including
the following:

Check the values before calling the function•	
Design checks into the function. This is particularly applicable for in-house designed •	
libraries, though it could apply to bought-in libraries if the supplier can demonstrate that
they have built in the checks.
Produce “wrapped” versions of functions, that perform the checks then call the original •	
function.
Demonstrate statically that the input parameters can never take invalid values.•	

Note that when checking a floating-point parameter to a function, that has a singularity at zero, it
may be appropriate to perform a test of equality to zero. This will require a deviation to Rule 13.3.
However it will usually still be necessary to test to a tolerance around zero (or any other singularity)
if the magnitude of the value of the function tends to infinity as the parameter tends to zero, so as
to prevent overflow occurring.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

78

Rule 20.4 (required):	 Dynamic heap memory allocation shall not be used.
[Unspecified 19; Undefined 91, 92; Implementation 69; Koenig 32]

This precludes the use of the functions calloc, malloc, realloc and free.
There is a whole range of unspecified, undefined and implementation-defined behaviour associated
with dynamic memory allocation, as well as a number of other potential pitfalls. Dynamic heap
memory allocation may lead to memory leaks, data inconsistency, memory exhaustion, non-
deterministic behaviour.
Note that some implementations may use dynamic heap memory allocation to implement other
functions (for example functions in the library string.h). If this is the case then these functions
shall also be avoided.

Rule 20.5 (required):	 The error indicator errno shall not be used.
[Implementation 46, Koenig 73]

errno is a facility of C, which in theory should be useful, but which in practice is poorly defined
by the standard. A non zero value may or may not indicate that a problem has occurred; as a result
it shall not be used. Even for those functions for which the behaviour of errno is well defined, it is
preferable to check the values of inputs before calling the function rather than rely on using errno
to trap errors (see Rule 16.10).

Rule 20.6 (required):	 The macro offsetof, in library <stddef.h>, shall not be used.
[Undefined 59]

Use of this macro can lead to undefined behaviour when the types of the operands are incompatible
or when bit fields are used.

Rule 20.7 (required):	 The setjmp macro and the longjmp function shall not be used.
[Unspecified 14; Undefined 64–67, Koenig 74]

setjmp and longjmp allow the normal function call mechanisms to be bypassed, and shall not be
used.

Rule 20.8 (required):	 The signal handling facilities of <signal.h> shall not be used.
[Undefined 68, 69; Implementation 48–52; Koenig 74]

Signal handling contains implementation-defined and undefined behaviour.

Rule 20.9 (required):	 The input/output library <stdio.h> shall not be used in
production code.

[Unspecified 2–5,16–18; Undefined 77–89; Implementation 53–68]
This includes file and I/O functions fgetpos, fopen, ftell, gets, perror, remove, rename and
ungetc.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

79

Streams and file I/O have a large number of unspecified, undefined and implementation-defined
behaviours associated with them. It is assumed within this document that they will not normally
be needed in production code in embedded systems.
If any of the features of stdio.h need to be used in production code, then the issues associated with
the feature need to be understood.

Rule 20.10 (required):	 The library functions atof, atoi and atol from library <stdlib.h>
shall not be used.

[Undefined 90]
These functions have undefined behaviour associated with them when the string cannot be
converted.

Rule 20.11 (required):	 The library functions abort, exit, getenv and system from library
<stdlib.h> shall not be used.

[Undefined 93; Implementation 70–73]
These functions will not normally be required in an embedded system, which does not normally
need to communicate with an environment. If the functions are found necessary in an application,
then it is essential to check on the implementation-defined behaviour of the function in the
environment in question.

Rule 20.12 (required):	 The time handling functions of library <time.h> shall not be used.
[Unspecified 22; Undefined 97; Implementation 75, 76]

Includes time, strftime. This library is associated with clock times. Various aspects are
implementation dependent or unspecified, such as the formats of times. If any of the facilities of
time.h are used then the exact implementation for the compiler being used must be determined
and a deviation raised.

Run-time failures6.21	

Rule 21.1 (required):	 Minimisation of run-time failures shall be ensured by the use of
at least one of

static analysis tools/techniques;(a)	
dynamic analysis tools/techniques;(b)	
explicit coding of checks to handle run-time faults.(c)	

[Undefined 19, 26, 94]
Run-time checking is an issue, which is not specific to C, but it is an issue which C programmers
need to pay special attention to. This is because the C language is weak in its provision of any
run-time checking. C implementations are not required to perform many of the dynamic checks
that are necessary for robust software. It is therefore an issue that C programmers need to consider
carefully, adding dynamic checks to code wherever there is potential for run-time errors to occur.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

80

Where expressions consist only of values within a well-defined range, a run-time check may
not be necessary, provided it can be demonstrated that for all values within the defined range
the exception cannot occur. Such a demonstration, if used, should be documented along with
the assumptions on which it depends. However if adopting this approach, be very careful about
subsequent modifications of the code which may invalidate the assumptions, or of the assumptions
changing for any other reason.
The following notes give some guidance on areas where consideration needs to be given to the
provision of dynamic checks.

arithmetic errors•	

This includes errors occurring in the evaluation of expressions, such as overflow,
underflow, divide by zero or loss of significant bits through shifting.
In considering integer overflow, note that unsigned integer calculations do not strictly
overflow (producing undefined values), but the values wrap around (producing defined,
but possibly wrong, values).

pointer arithmetic•	

Ensure that when an address is calculated dynamically the computed address is reasonable
and points somewhere meaningful. In particular it should be ensured that if a pointer
points within a structure or array, then when the pointer has been incremented or otherwise
altered it still points to the same structure or array. See restrictions on pointer arithmetic –
Rules 17.1, 17.2 and 17.4.

array bound errors•	

Ensure that array indices are within the bounds of the array size before using them to
index the array.

function parameters•	

See Rule 20.3.

pointer dereferencing•	

Where a function returns a pointer and that pointer is subsequently de-referenced the
program should first check that the pointer is not NULL. Within a function, it is relatively
straightforward to reason about which pointers may or may not hold NULL values. Across
function boundaries, especially when calling functions defined in other source files or
libraries, it is much more difficult.

/* Given a pointer to a message, check the message header and return
 a pointer to the body of the message or NULL if the message is
 invalid. */
const char_t *msg_body (const char_t *msg)
{
 const char_t *body = NULL;

 if (msg != NULL)

 {
 if (msg_header_valid (msg))

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

81

 {
 body = &msg[MSG_HEADER_SIZE];
 }
 }
 return (body);
}

...

 char_t msg_buffer[MAX_MSG_SIZE];
const char_t *payload;
...
payload = msg_body (msg_buffer);
if (payload != NULL)
{
 /* process the message payload */
}

The techniques that will be employed to minimise run‑time failures should be planned and
documented, e.g. in design standards, test plans, static analysis configuration files, code review
checklists.

6.	 Rules (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

82

References7.	
[1]	 MISRA Guidelines for the Use of the C Language In Vehicle Based Software, ISBN

0-9524159-9-0, Motor Industry Research Association, Nuneaton, April 1998

[2]	 ISO/IEC 9899:1990, Programming languages — C, International Organization for
Standardization, 1990

[3]	 Hatton L., Safer C — Developing Software for High-integrity and Safety-critical Systems,
ISBN 0-07-707640-0, McGraw-Hill, 1994

[4]	 ISO/IEC 9899:COR1:1995, Technical Corrigendum 1, 1995

[5]	 ISO/IEC 9899:AMD1:1995, Amendment 1, 1995

[6]	 ISO/IEC 9899:COR2:1996, Technical Corrigendum 2, 1996

[7]	 ANSI X3.159-1989, Programming languages — C, American National Standards
Institute, 1989

[8]	 ISO/IEC 9899:1999, Programming languages — C, International Organization for
Standardization, 1999

[9]	 MISRA Development Guidelines for Vehicle Based Software, ISBN 0-9524156-0-7, Motor
Industry Research Association, Nuneaton, November 1994

[10]	 CRR80, The Use of Commercial Off-the-Shelf (COTS) Software in Safety Related
Applications, ISBN 0-7176-0984-7, HSE Books

[11]	 ISO 9001:2000, Quality management systems — Requirements, International Organization
for Standardization, 2000

[12]	 ISO 90003:2004, Software engineering — Guidelines for the application of
ISO 9001:2000 to computer software, ISO, 2004

[13]	 The TickIT Guide, Using ISO 9001:2000 for Software Quality Management System
Construction, Certification and Continual Improvement, Issue 5, British Standards
Institution, 2001

[14]	 Straker D., C Style: Standards and Guidelines, ISBN 0–13-116898-3, Prentice Hall 1991

[15]	 Fenton N.E. and Pfleeger S.L., Software Metrics: A Rigorous and Practical Approach, 2nd
Edition, ISBN 0-534-95429-1, PWS, 1998

[16]	 MISRA Report 5 Software Metrics, Motor Industry Research Association, Nuneaton,
February 1995

[17]	 MISRA Report 6 Verification and Validation, Motor Industry Research Association,
Nuneaton, February 1995

[18]	 Kernighan B.W., Ritchie D.M., The C programming language, 2nd edition, ISBN
0-13-110362-8, Prentice Hall, 1988 (note: The 1st edition is not a suitable reference
document as it does not describe ANSI/ISO C)

[19]	 Koenig A., C Traps and Pitfalls, ISBN 0-201-17928-8, Addison-Wesley, 1988

7.	 References

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

83

[20]	 IEC 61508, Functional safety of electrical/electronic/programmable electronic safety-
related systems, International Electromechanical Commission, in 7 parts published
between 1998 and 2000

[21]	 ANSI/IEEE Std 754, IEEE Standard for Binary Floating-Point Arithmetic, 1985

[22]	 ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded
Character Set (UCS), International Organization for Standardization, 2003

7.	 References (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

84

Summary of rulesAppendix A:	
This appendix gives a summary of all the rules in section 6 of this document.

Environment

1.1 (req) All code shall conform to ISO/IEC 9899:1990 “Programming languages —
C”, amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996

1.2 (req) No reliance shall be placed on undefined or unspecified behaviour.
1.3 (req) Multiple compilers and/or languages shall only be used if there is a common

defined interface standard for object code to which the languages/compilers/
assemblers conform.

1.4 (req) The compiler/linker shall be checked to ensure that 31 character significance and
case sensitivity are supported for external identifiers.

1.5 (adv) Floating-point implementations should comply with a defined floating-point
standard.

Language extensions

2.1 (req) Assembly language shall be encapsulated and isolated.
2.2 (req) Source code shall only use /* … */ style comments.
2.3 (req) The character sequence /* shall not be used within a comment.
2.4 (adv) Sections of code should not be “commented out”.

Documentation

3.1 (req) All usage of implementation-defined behaviour shall be documented.
3.2 (req) The character set and the corresponding encoding shall be documented.
3.3 (adv) The implementation of integer division in the chosen compiler should be

determined, documented and taken into account.
3.4 (req) All uses of the #pragma directive shall be documented and explained.
3.5 (req) The implementation defined behaviour and packing of bitfields shall be

documented if being relied upon.
3.6 (req) All libraries used in production code shall be written to comply with the

provisions of this document, and shall have been subject to appropriate
validation.

Appendix A

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

85

Character sets

4.1 (req) Only those escape sequences that are defined in the ISO C standard shall be used.
4.2 (req) Trigraphs shall not be used.

Identifiers

5.1 (req) Identifiers (internal and external) shall not rely on the significance of more than
31 characters.

5.2 (req) Identifiers in an inner scope shall not use the same name as an identifier in an
outer scope, and therefore hide that identifier.

5.3 (req) A typedef name shall be a unique identifier.
5.4 (req) A tag name shall be a unique identifier.
5.5 (adv) No object or function identifier with static storage duration should be reused.
5.6 (adv) No identifier in one name space should have the same spelling as an identifier in

another name space, with the exception of structure member and union member
names.

5.7 (adv) No identifier name should be reused.

Types

6.1 (req) The plain char type shall be used only for storage and use of character values.
6.2 (req) signed and unsigned char type shall be used only for the storage and use of

numeric values.
6.3 (adv) typedefs that indicate size and signedness should be used in place of the basic

numerical types.
6.4 (req) Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 (req) Bit fields of signed type shall be at least 2 bits long.

Constants

7.1 (req) Octal constants (other than zero) and octal escape sequences shall not be used.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

86

Declarations and definitions

8.1 (req) Functions shall have prototype declarations and the prototype shall be visible at
both the function definition and call.

8.2 (req) Whenever an object or function is declared or defined, its type shall be explicitly
stated.

8.3 (req) For each function parameter the type given in the declaration and definition shall
be identical, and the return types shall also be identical.

8.4 (req) If objects or functions are declared more than once their types shall be
compatible.

8.5 (req) There shall be no definitions of objects or functions in a header file.
8.6 (req) Functions shall be declared at file scope.
8.7 (req) Objects shall be defined at block scope if they are only accessed from within a

single function.
8.8 (req) An external object or function shall be declared in one and only one file.
8.9 (req) An identifier with external linkage shall have exactly one external definition.
8.10 (req) All declarations and definitions of objects or functions at file scope shall have

internal linkage unless external linkage is required.
8.11 (req) The static storage class specifier shall be used in definitions and declarations of

objects and functions that have internal linkage.
8.12 (req) When an array is declared with external linkage, its size shall be stated explicitly

or defined implicitly by initialisation.

Initialisation

9.1 (req) All automatic variables shall have been assigned a value before being used.
9.2 (req) Braces shall be used to indicate and match the structure in the non-zero

initialisation of arrays and structures.
9.3 (req) In an enumerator list, the “=” construct shall not be used to explicitly initialise

members other than the first, unless all items are explicitly initialised.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

87

Arithmetic type conversions

10.1 (req) The value of an expression of integer type shall not be implicitly converted to a
different underlying type if:

it is not a conversion to a wider integer type of the same signedness, or(a) 	
the expression is complex, or(b) 	
the expression is not constant and is a function argument, or(c) 	
the expression is not constant and is a return expression(d) 	

10.2 (req) The value of an expression of floating type shall not be implicitly converted to a
different type if:

it is not a conversion to a wider floating type, or(a) 	
the expression is complex, or(b) 	
the expression is a function argument, or(c) 	
the expression is a return expression(d) 	

10.3 (req) The value of a complex expression of integer type shall only be cast to a type of
the same signedness that is no wider than the underlying type of the expression.

10.4 (req) The value of a complex expression of floating type shall only be cast to a floating
type that is narrower or of the same size.

10.5 (req) If the bitwise operators ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand.

10.6 (req): A “U” suffix shall be applied to all constants of unsigned type.

Pointer type conversions

11.1 (req) Conversions shall not be performed between a pointer to a function and any type
other than an integral type.

11.2 (req) Conversions shall not be performed between a pointer to object and any type
other than an integral type, another pointer to object type or a pointer to void.

11.3 (adv) A cast should not be performed between a pointer type and an integral type.
11.4 (adv) A cast should not be performed between a pointer to object type and a different

pointer to object type.
11.5 (req) A cast shall not be performed that removes any const or volatile qualification

from the type addressed by a pointer.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

88

Expressions

12.1 (adv) Limited dependence should be placed on C’s operator precedence rules in
expressions.

12.2 (req) The value of an expression shall be the same under any order of evaluation that
the standard permits.

12.3 (req) The sizeof operator shall not be used on expressions that contain side effects.
12.4 (req) The right-hand operand of a logical && or || operator shall not contain side

effects.
12.5 (req) The operands of a logical && or || shall be primary‑expressions.
12.6 (adv) The operands of logical operators (&&, || and !) should be effectively Boolean.

Expressions that are effectively Boolean should not be used as operands to
operators other than (&&, || , !, =, ==, != and ?:).

12.7 (req) Bitwise operators shall not be applied to operands whose underlying type is
signed.

12.8 (req) The right-hand operand of a shift operator shall lie between zero and one less
than the width in bits of the underlying type of the left-hand operand.

12.9 (req) The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

12.10 (req) The comma operator shall not be used.
12.11 (adv) Evaluation of constant unsigned integer expressions should not lead to wrap-

around.
12.12 (req) The underlying bit representations of floating-point values shall not be used.
12.13 (adv) The increment (++) and decrement (--) operators should not be mixed with

other operators in an expression.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

89

Control statement expressions

13.1 (req) Assignment operators shall not be used in expressions that yield a Boolean value.
13.2 (adv) Tests of a value against zero should be made explicit, unless the operand is

effectively Boolean.
13.3 (req) Floating-point expressions shall not be tested for equality or inequality.
13.4 (req) The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 (req) The three expressions of a for statement shall be concerned only with loop

control.
13.6 (req) Numeric variables being used within a for loop for iteration counting shall not be

modified in the body of the loop.
13.7 (req) Boolean operations whose results are invariant shall not be permitted.

Control flow

14.1 (req) There shall be no unreachable code.
14.2 (req) All non-null statements shall either

have at least one side-effect however executed, or(a) 	
cause control flow to change.(b) 	

14.3 (req) Before preprocessing, a null statement shall only occur on a line by itself; it may
be followed by a comment provided that the first character following the null
statement is a white‑space character.

14.4 (req) The goto statement shall not be used.
14.5 (req) The continue statement shall not be used.
14.6 (req) For any iteration statement there shall be at most one break statement used for

loop termination.
14.7 (req) A function shall have a single point of exit at the end of the function.
14.8 (req) The statement forming the body of a switch, while, do … while or for statement

shall be a compound statement.
14.9 (req) An if (expression) construct shall be followed by a compound statement. The

else keyword shall be followed by either a compound statement, or another if
statement.

14.10 (req) All if … else if constructs shall be terminated with an else clause.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

90

Switch statements

15.0 (req) The MISRA C switch syntax shall be used.
15.1 (req) A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement.
15.2 (req) An unconditional break statement shall terminate every non‑empty switch clause.
15.3 (req) The final clause of a switch statement shall be the default clause.
15.4 (req) A switch expression shall not represent a value that is effectively Boolean.
15.5 (req) Every switch statement shall have at least one case clause.

Functions

16.1 (req) Functions shall not be defined with variable numbers of arguments.
16.2 (req) Functions shall not call themselves, either directly or indirectly.
16.3 (req) Identifiers shall be given for all of the parameters in a function prototype

declaration.
16.4 (req) The identifiers used in the declaration and definition of a function shall be

identical.
16.5 (req) Functions with no parameters shall be declared and defined with the parameter

list void.
16.6 (req) The number of arguments passed to a function shall match the number of

parameters.
16.7 (adv) A pointer parameter in a function prototype should be declared as pointer to const

if the pointer is not used to modify the addressed object.
16.8 (req) All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
16.9 (req) A function identifier shall only be used with either a preceding &, or with a

parenthesised parameter list, which may be empty.
16.10 (req) If a function returns error information, then that error information shall be tested.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

91

Pointers and arrays

17.1 (req) Pointer arithmetic shall only be applied to pointers that address an array or array
element.

17.2 (req) Pointer subtraction shall only be applied to pointers that address elements of the
same array.

17.3 (req) >, >=, <, <= shall not be applied to pointer types except where they point to the
same array.

17.4 (req) Array indexing shall be the only allowed form of pointer arithmetic.
17.5 (adv) The declaration of objects should contain no more than 2 levels of pointer

indirection.
17.6 (req) The address of an object with automatic storage shall not be assigned

to another object that may persist after the first object has ceased to exist.

Structures and unions

18.1 (req) All structure or union types shall be complete at the end of a translation unit.
18.2 (req) An object shall not be assigned to an overlapping object.
18.3 (req) An area of memory shall not be reused for unrelated purposes.
18.4 (req) Unions shall not be used.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

92

Preprocessing directives

19.1 (adv) #include statements in a file should only be preceded by other preprocessor
directives or comments.

19.2 (adv) Non-standard characters should not occur in header file names in #include
directives.

19.3 (req) The #include directive shall be followed by either a <filename> or "filename"
sequence.

19.4 (req) C macros shall only expand to a braced initialiser, a constant, a string literal, a
parenthesised expression, a type qualifier, a storage class specifier, or a do-while-
zero construct.

19.5 (req) Macros shall not be #define’d or #undef’d within a block.
19.6 (req) #undef shall not be used.
19.7 (adv) A function should be used in preference to a function-like macro.
19.8 (req) A function-like macro shall not be invoked without all of its arguments.
19.9 (req) Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
19.10 (req) In the definition of a function-like macro each instance of a parameter shall be

enclosed in parentheses unless it is used as the operand of # or ##.
19.11 (req) All macro identifiers in preprocessor directives shall be defined before use, except

in #ifdef and #ifndef preprocessor directives and the defined() operator.
19.12 (req) There shall be at most one occurrence of the # or ## preprocessor operators in a

single macro definition.
19.13 (adv) The # and ## preprocessor operators should not be used.
19.14 (req) The defined preprocessor operator shall only be used in one of the two standard

forms.
19.15 (req) Precautions shall be taken in order to prevent the contents of a header file being

included twice.
19.16 (req) Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.
19.17 (req) All #else, #elif and #endif preprocessor directives shall reside in the same file as

the #if or #ifdef directive to which they are related.

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

93

Standard libraries

20.1 (req) Reserved identifiers, macros and functions in the standard library, shall not be
defined, redefined or undefined.

20.2 (req) The names of standard library macros, objects and functions shall not be reused.
20.3 (req) The validity of values passed to library functions shall be checked.
20.4 (req) Dynamic heap memory allocation shall not be used.
20.5 (req) The error indicator errno shall not be used.
20.6 (req) The macro offsetof, in library <stddef.h>, shall not be used.
20.7 (req) The setjmp macro and the longjmp function shall not be used.
20.8 (req) The signal handling facilities of <signal.h> shall not be used.
20.9 (req) The input/output library <stdio.h> shall not be used in production code.
20.10 (req) The library functions atof, atoi and atol from library <stdlib.h> shall not be used.
20.11 (req) The library functions abort, exit, getenv and system from library <stdlib.h> shall

not be used.
20.12 (req) The time handling functions of library <time.h> shall not be used.

Run-time failures

21.1 (req) Minimisation of run-time failures shall be ensured by the use of at least one of
static analysis tools/techniques;(a) 	
dynamic analysis tools/techniques;(b) 	
explicit coding of checks to handle run-time faults.(c) 	

Appendix A (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

94

MISRA-C:1998 to MISRA-C:2004 rule Appendix B:	
mapping
MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

1 (req) 1.1 (req) All code shall conform to ISO/IEC 9899:1990 “Programming
languages — C”, amended and corrected by ISO/IEC 9899/
COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC 9899/
COR2:1996

1 (req) 1.2 (req) No reliance shall be placed on undefined or unspecified behaviour.
1 (req) 2.2 (req) Source code shall only use /* … */ style comments.
1 (req) 3.1 (req) All usage of implementation-defined behaviour shall be

documented.
2 (adv) 1.3 (req) Multiple compilers and/or languages shall only be used if there is

a common defined interface standard for object code to which the
languages/compilers/assemblers conform.

3 (adv) 2.1 (req) Assembly language shall be encapsulated and isolated.
4 (adv) 21.1 (req) Minimisation of run-time failures shall be ensured by the use of at

least one of
static analysis tools/techniques;(a) 	
dynamic analysis tools/techniques;(b) 	
explicit coding of checks to handle run-time faults.(c) 	

5 (req) 4.1 (req) Only those escape sequences that are defined in the ISO C
standard shall be used.

6 (req) 3.2 (req) The character set and the corresponding encoding shall be
documented.

7 (req) 4.2 (req) Trigraphs shall not be used.
8 (req) Rescinded
9 (req) 2.3 (req) The character sequence /* shall not be used within a comment.
10 (adv) 2.4 (adv) Sections of code should not be “commented out”.
11 (req) 1.4 (req) The compiler/linker shall be checked to ensure that 31 character

significance and case sensitivity are supported for external
identifiers.

11 (req) 5.1 (req) Identifiers (internal and external) shall not rely on the significance
of more than 31 characters.

12 (adv) 5.5 (adv) No object or function identifier with static storage duration should
be reused.

12 (adv) 5.6 (adv) No identifier in one name space should have the same spelling
as an identifier in another name space, with the exception of
structure member and union member names.

Appendix B

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

95

MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

12 (adv) 5.7 (adv) No identifier name should be reused.
13(adv) 6.3 (adv) typedefs that indicate size and signedness should be used in place

of the basic numerical types.
14 (req) 6.1 (req) The plain char type shall be used only for storage and use of

character values.
14 (req) 6.2 (req) signed and unsigned char type shall be used only for the storage

and use of numeric values.
15 (adv) 1.5 (adv) Floating-point implementations should comply with a defined

floating-point standard.
16 (req) 12.12 (req) The underlying bit representations of floating-point values shall

not be used.
17 (req) 5.3 (req) A typedef name shall be a unique identifier.
18 (adv) Rescinded
19 (req) 7.1 (req) Octal constants (other than zero) and octal escape sequences shall

not be used.
20 (req) Rescinded
21 (req) 5.2 (req) Identifiers in an inner scope shall not use the same name as an

identifier in an outer scope, and therefore hide that identifier.
22 (adv) 8.7 (req) Objects shall be defined at block scope if they are only accessed

from within a single function.
23 (adv) 8.10 (req) All declarations and definitions of objects or functions at file

scope shall have internal linkage unless external linkage is
required.

24 (req) 8.11 (req) The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

25 (req) 8.9 (req) An identifier with external linkage shall have exactly one external
definition.

26 (req) 8.4 (req) If objects or functions are declared more than once their types
shall be compatible.

27 (adv) 8.8 (req) An external object or function shall be declared in one and only
one file.

28 (adv) Rescinded
29 (req) 5.4 (req) A tag name shall be a unique identifier.
30 (req) 9.1 (req) All automatic variables shall have been assigned a value before

being used.

Appendix B (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

96

MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

31 (req) 9.2 (req) Braces shall be used to indicate and match the structure in the
non-zero initialisation of arrays and structures.

32 (req) 9.3 (req) In an enumerator list, the “=” construct shall not be used to
explicitly initialise members other than the first, unless all items
are explicitly initialised.

33 (req) 12.4 (req) The right-hand operand of a logical && or || operator shall not
contain side effects.

34 (req) 12.5 (req) The operands of a logical && or || shall be primary‑expressions.
35 (req) 13.1 (req) Assignment operators shall not be used in expressions that yield a

Boolean value.
36 (adv) 12.6 (adv) The operands of logical operators (&&, || and !) should be

effectively Boolean. Expressions that are effectively Boolean
should not be used as operands to operators other than (&&, ||, !,
=, ==, != and ?:).

37 (req) 10.5 (req) If the bitwise operators ~ and << are applied to an operand of
underlying type unsigned char or unsigned short, the result shall
be immediately cast to the underlying type of the operand.

37 (req) 12.7 (req) Bitwise operators shall not be applied to operands whose
underlying type is signed.

38 (req) 12.8 (req) The right-hand operand of a shift operator shall lie between zero
and one less than the width in bits of the underlying type of the
left-hand operand.

39 (req) 12.9 (req) The unary minus operator shall not be applied to an expression
whose underlying type is unsigned.

40 (adv) 12.3 (req) The sizeof operator shall not be used on expressions that contain
side effects.

41 (adv) 3.3 (adv) The implementation of integer division in the chosen compiler
should be determined, documented and taken into account.

42 (req) 12.10 (req) The comma operator shall not be used.
43 (req) 10.1 (req) The value of an expression of integer type shall not be implicitly

converted to a different underlying type if:
it is not a conversion to a wider integer type of the same (a) 	
signedness, or
the expression is complex, or(b) 	
the expression is not constant and is a function argument, (c) 	
or
the expression is not constant and is a return expression(d) 	

Appendix B (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

97

MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

44 (adv) Rescinded
45 (req) 11.1 (req) Conversions shall not be performed between a pointer to a

function and any type other than an integral type.
45 (req) 11.2 (req) Conversions shall not be performed between a pointer to object

and any type other than an integral type, another pointer to object
type or a pointer to void.

45 (req) 11.3 (adv) A cast should not be performed between a pointer type and an
integral type.

45 (req) 11.4 (adv) A cast should not be performed between a pointer to object type
and a different pointer to object type.

45 (req) 11.5 (req) A cast shall not be performed that removes any const or volatile
qualification from the type addressed by a pointer.

46 (req) 12.2 (req) The value of an expression shall be the same under any order of
evaluation that the standard permits.

47 (adv) 12.1 (adv) Limited dependence should be placed on C’s operator precedence
rules in expressions.

48 (adv) 10.4 (req) The value of a complex expression of floating type shall only be
cast to a floating type that is narrower or of the same size.

49 (adv) 13.2 (adv) Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean.

50 (req) 13.3 (req) Floating-point expressions shall not be tested for equality or
inequality.

51 (adv) 12.11 (adv) Evaluation of constant unsigned integer expressions should not
lead to wrap-around.

52 (req) 14.1 (req) There shall be no unreachable code.
53 (req) 14.2 (req) All non-null statements shall either

have at least one side-effect however executed, or(a) 	
cause control flow to change.(b) 	

54 (req) 14.3 (req) Before preprocessing, a null statement shall only occur on a line
by itself; it may be followed by a comment provided that the first
character following the null statement is a white‑space character.

55 (adv) Rescinded
56 (req) 14.4 (req) The goto statement shall not be used.
57 (req) 14.5 (req) The continue statement shall not be used.
58 (req) Rescinded

Appendix B (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

98

MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

59 (req) 14.8 (req) The statement forming the body of a switch, while, do … while or
for statement shall be a compound statement.

59 (req) 14.9 (req) An if (expression) construct shall be followed by a compound
statement. The else keyword shall be followed by either a
compound statement, or another if statement.

60 (adv) 14.10 (req) All if … else if constructs shall be terminated with an else clause.
61 (req) 15.1 (req) A switch label shall only be used when the most closely-enclosing

compound statement is the body of a switch statement.
61 (req) 15.2 (req) An unconditional break statement shall terminate every

non‑empty switch clause.
62 (req) 15.3 (req) The final clause of a switch statement shall be the default clause.
63 (adv) 15.4 (req) A switch expression shall not represent a value that is effectively

Boolean.
64 (req) 15.5 (req) Every switch statement shall have at least one case clause.
65 (req) 13.4 (req) The controlling expression of a for statement shall not contain any

objects of floating type.
66 (adv) 13.5 (req) The three expressions of a for statement shall be concerned only

with loop control.
67 (adv) 13.6 (req) Numeric variables being used within a for loop for iteration

counting shall not be modified in the body of the loop.
68 (req) 8.6 (req) Functions shall be declared at file scope.
69 (req) 16.1 (req) Functions shall not be defined with variable numbers of

arguments.
70 (req) 16.2 (req) Functions shall not call themselves, either directly or indirectly.
71 (req) 8.1 (req) Functions shall have prototype declarations and the prototype

shall be visible at both the function definition and call.
72 (req) 8.3 (req) For each function parameter the type given in the declaration and

definition shall be identical, and the return types shall also be
identical.

73 (req) 16.3 (req) Identifiers shall be given for all of the parameters in a function
prototype declaration.

74 (req) 16.4 (req) The identifiers used in the declaration and definition of a function
shall be identical.

75 (req) 8.2 (req) Whenever an object or function is declared or defined, its type
shall be explicitly stated.

Appendix B (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

99

MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

76 (req) 16.5 (req) Functions with no parameters shall be declared and defined with
the parameter list void.

77 (req) 10.2 (req) The value of an expression of floating type shall not be implicitly
converted to a different type if:

it is not a conversion to a wider floating type, or(a) 	
the expression is complex, or(b) 	
the expression is a function argument, or(c) 	
the expression is a return expression(d) 	

78 (req) 16.6 (req) The number of arguments passed to a function shall match the
number of parameters.

79 (req) Rescinded
80 (req) Rescinded
81 (adv) 16.7 (adv) A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

82 (adv) 14.7 (req) A function shall have a single point of exit at the end of the
function.

83 (req) 16.8 (req) All exit paths from a function with non-void return type shall
have an explicit return statement with an expression.

84 (req) Rescinded
85 (adv) 16.9 (req) A function identifier shall only be used with either a preceding &,

or with a parenthesised parameter list, which may be empty.
86 (adv) 16.10 (req) If a function returns error information, then that error information

shall be tested.
87 (req) 8.5 (req) There shall be no definitions of objects or functions in a header

file.
87 (req) 19.1 (adv) #include statements in a file should only be preceded by other

preprocessor directives or comments.
88 (req) 19.2 (adv) Non-standard characters should not occur in header file names in

#include directives.
89 (req) 19.3 (req) The #include directive shall be followed by either a <filename>

or "filename" sequence.
90 (req) 19.4 (req) C macros shall only expand to a braced initialiser, a constant, a

string literal, a parenthesised expression, a type qualifier, a storage
class specifier, or a do-while-zero construct.

91 (req) 19.5 (req) Macros shall not be #define’d or #undef’d within a block.

Appendix B (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

100

MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

92 (adv) 19.6 (req) #undef shall not be used.
93 (adv) 19.7 (adv) A function should be used in preference to a function-like macro.
94 (req) 19.8(req) A function-like macro shall not be invoked without all of its

arguments.
95 (req) 19.9 (req) Arguments to a function-like macro shall not contain tokens that

look like preprocessing directives.
96 (req) 19.10 (req) In the definition of a function-like macro each instance of a

parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##.

97 (adv) 19.11 (req) All macro identifiers in preprocessor directives shall be defined
before use, except in #ifdef and #ifndef preprocessor directives
and the defined() operator.

98 (req) 19.12 (req) There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

98 (req) 19.13 (adv) The # and ## preprocessor operators should not be used.
99 (req) 3.4 (req) All uses of the #pragma directive shall be documented and

explained.
100 (req) 19.14 (req) The defined preprocessor operator shall only be used in one of the

two standard forms.
101 (adv) 17.1 (req) Pointer arithmetic shall only be applied to pointers that address an

array or array element.
101 (adv) 17.2 (req) Pointer subtraction shall only be applied to pointers that address

elements of the same array.
101 (adv) 17.4 (req) Array indexing shall be the only allowed form of pointer

arithmetic.
102 (adv) 17.5 (adv) The declaration of objects should contain no more than 2 levels of

pointer indirection.
103 (req) 17.3 (req) >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
104 (req) Rescinded
105 (req) Rescinded
106 (req) 17.6 (req) The address of an object with automatic storage shall not be

assigned to another object that may persist after the first object
has ceased to exist.

107 (req) Rescinded.

Appendix B (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

101

MISRA-C:
1998

MISRA-C:
2004

MISRA-C:
2004 rule

108 (req) 18.1 (req) All structure or union types shall be complete at the end of a
translation unit.

109 (req) 18.2 (req) An object shall not be assigned to an overlapping object.
109 (req) 18.3 (req) An area of memory shall not be reused for unrelated purposes.
110 (req) 18.4 (req) Unions shall not be used.
111 (req) 6.4 (req) Bit fields shall only be defined to be of type unsigned int or signed

int.
112 (req) 6.5 (req) Bit fields of signed type shall be at least 2 bits long.
113 (req) Rescinded.
114 (req) 20.1 (req) Reserved identifiers, macros and functions in the standard library,

shall not be defined, redefined or undefined.
115 (req) 20.2 (req) The names of standard library macros, objects and functions shall

not be reused.
116 (req) 3.6 (req) All libraries used in production code shall be written to comply

with the provisions of this document, and shall have been subject
to appropriate validation.

117 (req) 20.3 (req) The validity of values passed to library functions shall be
checked.

118 (req) 20.4 (req) Dynamic heap memory allocation shall not be used.
119 (req) 20.5 (req) The error indicator errno shall not be used.
120 (req) 20.6 (req) The macro offsetof, in library <stddef.h>, shall not be used.
121 (req) Rescinded
122 (req) 20.7 (req) The setjmp macro and the longjmp function shall not be used.
123 (req) 20.8 (req) The signal handling facilities of <signal.h> shall not be used.
124 (req) 20.9 (req) The input/output library <stdio.h> shall not be used in production

code.
125 (req) 20.10 (req) The library functions atof, atoi and atol from library

<stdlib.h> shall not be used.
126 (req) 20.11 (req) The library functions abort, exit, getenv and system from library

<stdlib.h> shall not be used.
127 (req) 20.12 (req) The time handling functions of library <time.h> shall not be used.

Appendix B (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

102

MISRA-C:1998 – Rescinded rulesAppendix C:	
Rule 8 (rescinded): Multibyte characters and wide string literals shall not be used.
Rule 18 (rescinded): Integer constants should be suffixed to reflect their type where an

appropriate suffix is available.
Rule 20 (rescinded): All object and function identifiers shall be declared before use.
Rule 28 (rescinded): The register storage class specifier should not be used.
Rule 44 (rescinded): Redundant explicit casts should not be used.
Rule 55 (rescinded): Labels should not be used, except in switch statements.
Rule 58 (rescinded): The break statement shall not be used (except to terminate the cases

of a switch statement).
Rule 79 (rescinded): The values returned by void functions shall not be used.
Rule 80 (rescinded): Void expressions shall not be passed as function parameters.
Rule 84 (rescinded): For functions with void return type, return statements shall not have

an expression.
Rule 104 (rescinded): Non-constant pointers to functions shall not be used.
Rule 105 (rescinded): All the functions pointed to by a single pointer to function shall be

identical in the number and type of parameters and the return type.
Rule 107 (rescinded): The null pointer shall not be de-referenced.
Rule 113 (rescinded): All the members of a structure (or union) shall be named and shall

only be accessed via their name.
Rule 121 (rescinded): <locale.h> and the setlocale function shall not be used

Appendix C

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

103

Cross references to the ISO standardAppendix D:	
This appendix gives cross references between the rules given in this document and the sections of
ISO/IEC 9899:1990 [2].

MISRA-C:2004 rule numbers to ISO/IEC 9899:1990 referencesD.1	

Rule ISO Ref Rule ISO Ref Rule ISO Ref
1.4 6.1.2 8.7 6.1.2.1, 6.5 12.7 6.3.3.3, 6.3.7,
1.5 6.1.2.5 8.8 6.7 6.3.10, 6.3.11
2.2 6.1.9 8.9 6.7 6.3.12
2.3 6.1.9 8.10 6.1.2.1, 6.1.2.2, 12.8 6.3.7
2.4 6.1.9 6.5.4 12.9 6.3.3.3
3.3 6.3.5 8.11 6.1.2.2, 6.5.1, 12.10 6.3.17
3.4 6.8.6 6.5.4 12.11 6.4, 6.8.1
3.5 6.5.2.1 9.1 6.5.7 12.12 5.2.4.2.2, 6.1.2.5
4.1 5.2.2 9.2 6.5.7 12.13 6.3.2.4, 6.3.3.1
4.2 5.2.1.1 9.3 6.5.2.2 13.1 6.3.16
5.1 6.1.2 10.1 6.2 13.2 6.6.4.1, 6.6.5
5.2 6.1.2.1 10.2 6.2 13.3 5.2.4.2.2, 6.3.9
5.3 6.5.6 10.3 6.2, 6.3.4 13.4 6.6.5.3
5.4 6.5.2.3 10.4 6.2, 6.3.4 13.5 6.6.5.3
5.5 6.1.2.2 10.5 6.3.3.3, 6.3.7 13.6 6.6.5.3
5.6 6.1.2.3 10.6 6.1.3.2 14.2 5.1.2.3, 6.6.3
5.7 6.1.2 11.1 6.3.4 14.3 6.6.3
6.1 6.1.2.5 11.2 6.3.4 14.4 6.6.6.1
6.2 6.2.1.1 11.3 6.3.4 14.5 6.6.6.2
6.3 6.1.2.5, 6.5.2, 11.4 6.3.4 14.6 6.6.6.3

6.5.6 11.5 6.5.3 14.7 6.6.6.4
6.4 6.5.2.1 12.1 6.3 14.8 6.6.5
6.5 6.5.2.1 12.2 5.1.2.3, 6.3, 6.6 14.9 6.6.4.1
7.1 6.1.3.2 12.3 5.1.2.3, 6.3.3.4 14.10 6.6.4.1
8.1 6.3.2.2, 6.5.4.3 12.4 5.1.2.3, 6.3.13, 15.0 6.6.4.2
8.2 6.5.4 6.3.14 15.1 6.6.4.2
8.3 6.5.4.3, 6.7.1 12.5 6.3.1, 6.3.13, 15.2 6.6.4.2, 6.6.6.3
8.4 6.1.2.6, 6.5 6.3.14 15.3 6.6.4.2
8.5 6.8.2 12.6 6.3.3.3, 6.3.13, 15.4 6.6.4.2
8.6 6.1.2.1, 6.5.4.3 6.3.14 15.5 6.6.4.2

Appendix D

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

104

Rule ISO Ref Rule ISO Ref Rule ISO Ref
16.1 6.7.1, 7.8 18.2 6.3.16.1 19.15 6.8
16.2 6.3.2.2 18.4 6.1.2.5, 6.3.2.3, 19.16 6.8
16.3 6.5.4.3 6.5.2.1 20.1 6.8.8, 7.1.3, 7.13
16.4 6.5.4.3 19.1 6.8.2 20.2 7.1.3
16.5 6.5.4.3, 6.7.1 19.2 6.1.7 20.3 7.1.7, 7.3, 7.5.1,
16.6 6.3.2.2 19.3 6.8.2 7.5.6.4
16.7 6.5.4.1, 6.5.4.3 19.4 6.8.3 20.4 7.10.3
16.8 6.6.6.4 19.5 6.8.3, 6.8.3.5 20.5 7.1.4, 7.5.1
16.9 6.3.2.2, 6.3.3.2 19.6 6.8.3.5 20.6 7.1.6
17.1 6.3.6, 6.3.16.2 19.7 6.8.3 20.7 7.6
17.2 6.3.6, 6.3.16.2 19.8 6.8.3 20.8 7.7
17.3 6.3.8 19.9 6.8.3 20.9 7.9
17.4 6.3.2.1, 6.3.6 19.10 6.8.3 20.10 7.10.1
17.5 6.3.3.2, 6.5.4.1 19.11 6.8 20.11 7.10.4
17.6 6.1.2.4, 6.3.3.2 19.12 6.8.3.2, 6.8.3.3 20.12 7.12
18.1 6.1.2.5, 6.5, 19.13 6.8.3.2, 6.8.3.3 21.1 6.3, 6.3.3.2,

6.5.2.1 19.14 6.8.1 7.10.6

Appendix D (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

105

ISO/IEC 9899:1990 references to MISRA-C:2004 rule numbersD.2	

ISO Ref Rule ISO Ref Rule ISO Ref Rule
5.1.2.3 12.2, 12.3, 12.4, 6.3.5 3.3 6.6.5 13.2, 14.8

14.2 6.3.6 17.1, 17.2, 17.4 6.6.5.3 13.4, 13.5, 13.6
5.2.2 4.1 6.3.7 10.5, 12.7, 12.8 6.6.6.1 14.4
5.2.1.1 4.2 6.3.8 17.3 6.6.6.2 14.5
5.2.4.2.2 12.12, 13.3 6.3.9 13.3 6.6.6.3 14.6, 15.2
6.1.2 1.4, 5.1, 5.7 6.3.10 12.7 6.6.6.4 14.7, 16.8
6.1.2.1 5.2, 8.6, 8.7, 8.10 6.3.11 12.7 6.7 8.8, 8.9
6.1.2.2 5.5, 8.10, 8.11 6.3.12 12.7 6.7.1 8.3, 16.1, 16.4,
6.1.2.3 5.6 6.3.13 12.4, 12.5, 12.6 16.5
6.1.2.4 17.6 6.3.14 12.4, 12.5, 12.6 6.8 19.11, 19.15
6.1.2.5 1.5, 6.2, 6.3, 6.3.16 13.1 6.8.1 12.11, 19.14

12.12, 18.1, 18.4 6.3.16.1 18.2 6.8.2 8.5, 19.1, 19.3
6.1.2.6 8.4 6.3.16.2 17.1, 17.2 6.8.3 19.4, 19.5,
6.1.3.2 7.1, 10.6 6.3.17 12.10 19.7 – 10
6.1.7 19.2 6.4 12.11 6.8.3.2 19.12, 19.13
6.1.9 2.2, 2.3, 2.4 6.5 8.4, 8.7, 18.1 6.8.3.3 19.12, 19.13
6.2 10.1, 10.2, 10.3, 6.5.1 8.11 6.8.3.5 19.5, 19.6

10.4 6.5.2 6.3 6.8.6 3.4
6.2.1.1 6.1 6.5.2.1 3.5, 6.4, 6.5, 6.8.8 20.1
6.3 12.1, 12.2, 21.1 18.1, 18.4 7.1.3 20.1, 20.2
6.3.1 12.5 6.5.2.2 9.3 7.1.6 20.6
6.3.2.1 17.4 6.5.2.3 5.4 7.1.7 20.3
6.3.2.2 8.1, 16.2, 16.6, 6.5.3 11.5 7.3 20.3

16.9 6.5.4 8.2, 8.10, 8.11 7.5.1 20.3, 20.5
6.3.2.3 18.4 6.5.4.1 16.7, 17.5 7.5.6.4 20.3
6.3.2.4 12.13 6.5.4.3 8.1, 8.2, 8.3, 8.6, 7.6 20.7
6.3.3.1 12.13 16.3, 16.4, 16.5, 7.7 20.8
6.3.3.2 16.9, 17.5, 17.6, 16.7 7.8 16.1

21.1 6.5.6 5.3, 6.3 7.9 20.9
6.3.3.3 10.5, 12.6, 12.7, 6.5.7 9.1, 9.2 7.10.1 20.10

12.9 6.6 12.2 7.10.3 20.4
6.3.3.4 12.3 6.6.3 14.2, 14.3 7.10.6 21.1
6.3.4 10.3, 10.4, 11.1, 6.6.4.1 13.2, 14.9, 14.10 7.12 20.12

11.2, 11.3, 11.4 6.6.4.2 15.0 – 15.5 7.13 20.1

Appendix D (continued)

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

106

GlossaryAppendix E:	

Underlying type

See section 6.10.4 “Underlying type”.

Rule scope

The MISRA rules apply to all source files in a project. That is:
Files being written by the project team•	
All files supplied by other project teams and sub contractors•	
Compiler library header files but not the library files only supplied as object code•	
All third party library sources, particularly header files•	

It is recognised that there may be some problems getting third party source to comply but many
tool and library vendors are adopting MISRA-C for their source code.

Boolean expressions

Strictly speaking, there is no Boolean type in C, but there is a conceptual difference between
expressions which return a numeric value and expressions which return a Boolean value. An
expression is considered to represent a Boolean value either because it appears in a position where
a Boolean value is expected or because it uses an operator that gives rise to a Boolean value.
Boolean values are expected in the following contexts:

the controlling expression of an •	 if statement
the controlling expression of an iteration statement•	
the first operand of the conditional operator •	 ?

Each of these contexts requires an “effectively Boolean” expression which is either Boolean-by-
construct or Boolean-by-enforcement as defined below.
Boolean-by-construct values are produced by the following operators:

equality operators (•	 == and !=)
logical operators (•	 !, && and ||)
relational operators (•	 <, >, <= and >=)

Boolean-by-enforcement values can be introduced by implementing a specific type enforcement
mechanism using a tool. A Boolean type could be associated with a specific typedef, and would
then be used for any objects that are Boolean. This could bring many benefits, especially if the
checking tool can support it, and in particular it could help avoid confusion between logical
operations and integer operations.

Small integer type

The term small integer type is used to describe those integer types that are subject to integral
promotion. The affected types are char, short, bit-field and enum.

Appendix E

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

Licensed to: Tyler Doering.
10 Sep 2008. Copy 1 of 1

ISBN 978-0-9524156-2-6 paperback
ISBN 978-0-9524156-4-0 PDF Licensed to: Tyler Doering.

10 Sep 2008. Copy 1 of 1

