
ARM® and Thumb®-2 Instruction Set
Quick Reference Card

Key to Tables

Rm {, <opsh>} See Table Register, optionally shifted by constant

See Table Flexible Operand 2. Shift and rotate are only available as part of Operand2.

See Table PSR fields.

APSR (Application Program Status Register), CPSR (Current Processor Status Register), or SPSR
(Saved Processor Status Register)

Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later.

Can be Rs or an immediate shift value. The values allowed for each shift type are the same as those

shown in Table Register, optionally shifted by constant.

B meaning half-register [15:0], or T meaning [31:16].

ARM: a 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.

Thumb: a 32-bit constant, formed by left-shifting an 8-bit value by any number of bits, or a bit

pattern of one of the forms 0xXYXYXYXY, 0x00XY00XY or 0xXY00XY00.

See Table Prefixes for Parallel instructions

Increment After, Increment Before, Decrement After, or Decrement Before.

IB and DA are not available in Thumb state. If omitted, defaults to IA.

B, SB, H, or SH, meaning Byte, Signed Byte, Halfword, and Signed Halfword respectively.

SB and SH are not available in STR instructions.

 <reglist> A comma-separated list of registers, enclosed in braces { and }.

As <reglist>, must not include the PC.

As <reglist>, including the PC.

Either nzcvq (ALU flags PSR[31:27]) or g (SIMD GE flags
PSR[19:16])

See Table ARM architecture versions.

+ or –. (+ may be omitted.)

Interrupt flags. One or more of a, i, f (abort, interrupt, fast interrupt).

See Table Processor Modes

SP for the processor mode specified by <p_mode>

Least significant bit of bitfield.

Width of bitfield. <width> + <lsb> must be <= 32.

RsX is Rs rotated 16 bits if X present. Otherwise, RsX is Rs.

Updates base register after data transfer if ! present (pre-indexed).

Updates condition flags if S present.

User mode privilege if T present.

Rounds result to nearest if R present, otherwise truncates result.

<Operand2> <reglist-PC>

<fields> <reglist+PC>

<PSR> <flags>

C*, V* §

<Rs|sh> +/-
 <iflags>

x,y <p_mode>

<imm8m> SPm
 <lsb>
 <width>

<prefix> {X}

{IA|IB|DA|DB} {!}
 {S}

<size> {T}
 {R}

Operation § Assembler S updates Action Notes

Add Add

with carry

wide

saturating {doubled}

 ADD{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2 N
 ADC{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2 + Carry N
 T2 ADD Rd, Rn, #<imm12> Rd := Rn + imm12, imm12 range 0-4095 T, P
 5E Q{D}ADD Rd, Rm, Rn Rd := SAT(Rm + Rn) doubled: Rd := SAT(Rm + SAT(Rn * 2)) Q

Address Form PC-relative address ADR Rd, <label> Rd := <label>, for <label> range from current instruction see Note L N, L

Subtract Subtract

with carry

wide

reverse subtract

reverse subtract with carry

saturating {doubled}

Exception return without stack

T2

5E

SUB{S} Rd, Rn, <Operand2>

SBC{S} Rd, Rn, <Operand2>

SUB Rd, Rn, #<imm12>

RSB{S} Rd, Rn, <Operand2>

RSC{S} Rd, Rn, <Operand2>

Q{D}SUB Rd, Rm, Rn

SUBS PC, LR, #<imm8>

N Z C V

N Z C V

N Z C V

N Z C V

N Z C V

Rd := Rn – Operand2

Rd := Rn – Operand2 – NOT(Carry)

Rd := Rn – imm12, imm12 range 0-4095

Rd := Operand2 – Rn

Rd := Operand2 – Rn – NOT(Carry)

Rd := SAT(Rm – Rn) doubled: Rd := SAT(Rm – SAT(Rn * 2))

PC = LR – imm8, CPSR = SPSR(current mode), imm8 range 0-255.

N

N

T, P

N

A

Q

Parallel Halfword-wise addition

Halfword-wise subtraction

Byte-wise addition

Byte-wise subtraction

Halfword-wise exchange, add, subtract

Halfword-wise exchange, subtract, add

Unsigned sum of absolute differences

and accumulate

6 <prefix>ADD16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[31:16], Rd[15:0] := Rn[15:0] + Rm[15:0] G

arithmetic 6 <prefix>SUB16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] – Rm[31:16], Rd[15:0] := Rn[15:0] – Rm[15:0] G
 6 <prefix>ADD8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16],

Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]
G

 6 <prefix>SUB8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] – Rm[31:24], Rd[23:16] := Rn[23:16] – Rm[23:16],
Rd[15:8] := Rn[15:8] – Rm[15:8], Rd[7:0] := Rn[7:0] – Rm[7:0]

G

 6 <prefix>ASX Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] – Rm[31:16] G
 6 <prefix>SAX Rd, Rn, Rm Rd[31:16] := Rn[31:16] – Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16] G
 6 USAD8 Rd, Rm, Rs Rd := Abs(Rm[31:24] – Rs[31:24]) + Abs(Rm[23:16] – Rs[23:16])

+ Abs(Rm[15:8] – Rs[15:8]) + Abs(Rm[7:0] – Rs[7:0])

 6 USADA8 Rd, Rm, Rs, Rn Rd := Rn + Abs(Rm[31:24] – Rs[31:24]) + Abs(Rm[23:16] – Rs[23:16])
+ Abs(Rm[15:8] – Rs[15:8]) + Abs(Rm[7:0] – Rs[7:0])

Saturate Signed saturate word, right shift 6 SSAT Rd, #<sat>, Rm{, ASR <sh>} Rd := SignedSat((Rm ASR sh), sat). <sat> range 1-32, <sh> range 1-31.

Rd := SignedSat((Rm LSL sh), sat). <sat> range 1-32, <sh> range 0-31.

Rd[31:16] := SignedSat(Rm[31:16], sat),
Rd[15:0] := SignedSat(Rm[15:0], sat). <sat> range 1-16.

Rd := UnsignedSat((Rm ASR sh), sat). <sat> range 0-31, <sh> range 1-31.

Rd := UnsignedSat((Rm LSL sh), sat). <sat> range 0-31, <sh> range 0-31.

Rd[31:16] := UnsignedSat(Rm[31:16], sat),
Rd[15:0] := UnsignedSat(Rm[15:0], sat). <sat> range 0-15.

Q, R
 Signed saturate word, left shift 6 SSAT Rd, #<sat>, Rm{, LSL <sh>} Q
 Signed saturate two halfwords 6 SSAT16 Rd, #<sat>, Rm Q

Unsigned saturate word, right shift 6 USAT Rd, #<sat>, Rm{, ASR <sh>} Q, R

 Unsigned saturate word, left shift 6 USAT Rd, #<sat>, Rm{, LSL <sh>} Q
 Unsigned saturate two halfwords 6 USAT16 Rd, #<sat>, Rm Q

ARM and Thumb-2 Instruction Set
Quick Reference Card

Operation § Assembler S updates Action Notes

Multiply Multiply

and accumulate

and subtract

unsigned long

unsigned accumulate long

unsigned double accumulate long

Signed multiply long

and accumulate long

16 * 16 bit

32 * 16 bit

16 * 16 bit and accumulate

32 * 16 bit and accumulate

16 * 16 bit and accumulate long

Dual signed multiply, add

and accumulate

and accumulate long

Dual signed multiply, subtract

and accumulate

and accumulate long

Signed top word multiply

and accumulate

and subtract

with internal 40-bit accumulate

packed halfword

halfword

 MUL{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0] (If Rs is Rd, S can be used in Thumb-2) N, S
 MLA{S} Rd, Rm, Rs, Rn N Z C* Rd := (Rn + (Rm * Rs))[31:0] S
 T2 MLS Rd, Rm, Rs, Rn Rd := (Rn – (Rm * Rs))[31:0]

 UMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs) S
 UMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs) S
 6 UMAAL RdLo, RdHi, Rm, Rs RdHi,RdLo := unsigned(RdHi + RdLo + Rm * Rs)

 SMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs) S
 SMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs) S
 5E SMULxy Rd, Rm, Rs Rd := Rm[x] * Rs[y]

 5E SMULWy Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16]

 5E SMLAxy Rd, Rm, Rs, Rn Rd := Rn + Rm[x] * Rs[y] Q
 5E SMLAWy Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs[y])[47:16] Q
 5E SMLALxy RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]

 6 SMUAD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q
 6 SMLAD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q
 6 SMLALD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]

 6 SMUSD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q
 6 SMLSD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q
 6 SMLSLD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16]

 6 SMMUL{R} Rd, Rm, Rs Rd := (Rm * Rs)[63:32]

 6 SMMLA{R} Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs)[63:32]

 6 SMMLS{R} Rd, Rm, Rs, Rn Rd := Rn – (Rm * Rs)[63:32]

 XS MIA Ac, Rm, Rs Ac := Ac + Rm * Rs

 XS MIAPH Ac, Rm, Rs Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]

 XS MIAxy Ac, Rm, Rs Ac := Ac + Rm[x] * Rs[y]

Divide Signed or Unsigned RM <op> Rd, Rn, Rm Rd := Rn / Rm <op> is SDIV (signed) or UDIV (unsigned) T

Move
data

Move

not

top

wide

40-bit accumulator to register

register to 40-bit accumulator

 MOV{S} Rd, <Operand2>

MVN{S} Rd, <Operand2>

N

N

Z

Z

C

C

 Rd := Operand2 See also Shift instructions

Rd := 0xFFFFFFFF EOR Operand2

N

N

 T2 MOVT Rd, #<imm16> Rd[31:16] := imm16, Rd[15:0] unaffected, imm16 range 0-65535

 T2 MOV Rd, #<imm16> Rd[15:0] := imm16, Rd[31:16] = 0, imm16 range 0-65535

 XS MRA RdLo, RdHi, Ac RdLo := Ac[31:0], RdHi := Ac[39:32]

 XS MAR Ac, RdLo, RdHi Ac[31:0] := RdLo, Ac[39:32] := RdHi[7:0]

Shift Arithmetic shift right

Logical shift left

Logical shift right

Rotate right

Rotate right with extend

 ASR{S} Rd, Rm, <Rs|sh>

LSL{S} Rd, Rm, <Rs|sh>

LSR{S} Rd, Rm, <Rs|sh>

ROR{S} Rd, Rm, <Rs|sh>

RRX{S} Rd, Rm

N

N

N

N

N

Z

Z

Z

Z

Z

C

C

C

C

C

 Rd := ASR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ASR <Rs|sh>

Rd := LSL(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSL <Rs|sh>

Rd := LSR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSR <Rs|sh>

Rd := ROR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ROR <Rs|sh>

Rd := RRX(Rm) Same as MOV{S} Rd, Rm, RRX

N

N

N

N

Count leading zeros 5 CLZ Rd, Rm Rd := number of leading zeros in Rm

Compare Compare

negative

 CMP Rn, <Operand2>

CMN Rn, <Operand2>

N

N

Z

Z

C

C

V

V

Update CPSR flags on Rn – Operand2

Update CPSR flags on Rn + Operand2

N

N

Logical Test

Test equivalence

AND

EOR

ORR

ORN

Bit Clear

T2

TST Rn, <Operand2>

TEQ Rn, <Operand2>

AND{S} Rd, Rn, <Operand2>

EOR{S} Rd, Rn, <Operand2>

ORR{S} Rd, Rn, <Operand2>

ORN{S} Rd, Rn, <Operand2>

BIC{S} Rd, Rn, <Operand2>

N

N

N

N

N

N

N

Z

Z

Z

Z

Z

Z

Z

C

C

C

C

C

C

C

 Update CPSR flags on Rn AND Operand2

Update CPSR flags on Rn EOR Operand2

Rd := Rn AND Operand2

Rd := Rn EOR Operand2

Rd := Rn OR Operand2

Rd := Rn OR NOT Operand2

Rd := Rn AND NOT Operand2

N

N

N

N

T

N

ARM and Thumb-2 Instruction Set
Quick Reference Card

Operation § Assembler Action Notes

Bit field Bit Field Clear T2 BFC Rd, #<lsb>, #<width> Rd[(width+lsb–1):lsb] := 0, other bits of Rd unaffected

 Bit Field Insert T2 BFI Rd, Rn, #<lsb>, #<width> Rd[(width+lsb–1):lsb] := Rn[(width-1):0], other bits of Rd unaffected
 Signed Bit Field Extract T2 SBFX Rd, Rn, #<lsb>, #<width> Rd[(width–1):0] = Rn[(width+lsb–1):lsb], Rd[31:width] = Replicate(Rn[width+lsb–1])

 Unsigned Bit Field Extract T2 UBFX Rd, Rn, #<lsb>, #<width> Rd[(width–1):0] = Rn[(width+lsb–1):lsb], Rd[31:width] = Replicate(0)

Pack Pack halfword bottom + top 6 PKHBT Rd, Rn, Rm{, LSL #<sh>} Rd[15:0] := Rn[15:0], Rd[31:16] := (Rm LSL sh)[31:16]. sh 0-31.

 Pack halfword top + bottom 6 PKHTB Rd, Rn, Rm{, ASR #<sh>} Rd[31:16] := Rn[31:16], Rd[15:0] := (Rm ASR sh)[15:0]. sh 1-32.

Signed
extend

Halfword to word

Two bytes to halfwords

6

6

SXTH Rd, Rm{, ROR #<sh>}

SXTB16 Rd, Rm{, ROR #<sh>}

Rd[31:0] := SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.

Rd[31:16] := SignExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

N

 Byte to word 6 SXTB Rd, Rm{, ROR #<sh>} Rd[31:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3. N

Unsigned
extend

Halfword to word

Two bytes to halfwords

6

6

UXTH Rd, Rm{, ROR #<sh>}

UXTB16 Rd, Rm{, ROR #<sh>}

Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.

Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

N

 Byte to word 6 UXTB Rd, Rm{, ROR #<sh>} Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3. N

Signed
extend
with add

Halfword to word, add

Two bytes to halfwords, add

6

6

SXTAH Rd, Rn, Rm{, ROR #<sh>}

SXTAB16 Rd, Rn, Rm{, ROR #<sh>}

Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.

Rd[31:16] := Rn[31:16] + SignExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := Rn[15:0] + SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

 Byte to word, add 6 SXTAB Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Unsigned
extend
with add

Halfword to word, add

Two bytes to halfwords, add

6

6

UXTAH Rd, Rn, Rm{, ROR #<sh>}

UXTAB16 Rd, Rn, Rm{, ROR #<sh>}

Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.

Rd[31:16] := Rn[31:16] + ZeroExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := Rn[15:0] + ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

 Byte to word, add 6 UXTAB Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Reverse Bits in word

Bytes in word

Bytes in both halfwords

Bytes in low halfword,
sign extend

T2 RBIT Rd, Rm For (i = 0; i < 32; i++) : Rd[i] = Rm[31– i]

 6 REV Rd, Rm Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8], Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24] N

 6 REV16 Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24] N

 6 REVSH Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF N

Select Select bytes 6 SEL Rd, Rn, Rm Rd[7:0] := Rn[7:0] if GE[0] = 1, else Rd[7:0] := Rm[7:0]
Bits[15:8], [23:16], [31:24] selected similarly by GE[1], GE[2], GE[3]

If-Then If-Then T2 IT{pattern} {cond} Makes up to four following instructions conditional, according to pattern. pattern is a string of up to three
letters. Each letter can be T (Then) or E (Else).

The first instruction after IT has condition cond. The following instructions have condition cond if the
corresponding letter is T, or the inverse of cond if the corresponding letter is E.

See Table Condition Field for available condition codes.

T, U

Branch Branch B <label> PC := label. label is this instruction ±32MB (T2: ±16MB, T: –252 - +256B)

LR := address of next instruction, PC := label. label is this instruction ±32MB (T2: ±16MB).

PC := Rm. Target is Thumb if Rm[0] is 1, ARM if Rm[0] is 0.

LR := address of next instruction, PC := label, Change instruction set.
label is this instruction ±32MB (T2: ±16MB).

LR := address of next instruction, PC := Rm[31:1]. Change to Thumb if Rm[0] is 1, to ARM if Rm[0] is 0.

Change to Jazelle state if available

If Rn {== or !=} 0 then PC := label. label is (this instruction + 4-130).

PC = PC + ZeroExtend(Memory(Rn + Rm, 1) << 1). Branch range 4-512. Rn can be PC.

PC = PC + ZeroExtend(Memory(Rn + Rm << 1, 2) << 1). Branch range 4-131072. Rn can be PC.

N, B
 with link BL <label>

 and exchange 4T BX Rm N

 with link and exchange (1) 5T BLX <label> C

with link and exchange (2) 5 BLX Rm N

 and change to Jazelle state 5J BXJ Rm

 Compare, branch if (non) zero T2 CB{N}Z Rn,<label> N,T,U
 Table Branch Byte T2 TBB [Rn, Rm] T, U

 Table Branch Halfword T2 TBH [Rn, Rm, LSL #1] T, U

Move to or
from PSR

PSR to register

register flags to APSR flags

 MRS Rd, <PSR>

MSR APSR_<flags>, Rm

Rd := PSR

APSR_<flags> := Rm

 immediate flags to APSR flags MSR APSR_<flags>, #<imm8m> APSR_<flags> := immed_8r

 register to PSR MSR <PSR>_<fields>, Rm PSR := Rm (selected bytes only)
 immediate to PSR MSR <PSR>_<fields>, #<imm8m> PSR := immed_8r (selected bytes only)

Processor
state
change

Change processor state

Change processor mode

6

6

6

CPSID <iflags> {, #<p_mode>}

CPSIE <iflags> {, #<p_mode>}

CPS #<p_mode>

Disable specified interrupts, optional change mode.

Enable specified interrupts, optional change mode.

U, N

U, N

U

 Set endianness 6 SETEND <endianness> Sets endianness for loads and stores. <endianness> can be BE (Big Endian) or LE (Little Endian). U, N

ARM and Thumb-2 Instruction Set
Quick Reference Card

Single data item loads and stores § Assembler Action if <op> is LDR Action if <op> is STR Notes

Load
or store
word, byte
or halfword

Immediate offset

Post-indexed, immediate

Register offset

Post-indexed, register

PC-relative

 <op>{size}{T} Rd, [Rn {, #<offset>}]{!}

<op>{size}{T} Rd, [Rn], #<offset>

<op>{size} Rd, [Rn, +/-Rm {, <opsh>}]{!}

<op>{size}{T} Rd, [Rn], +/-Rm {, <opsh>}

<op>{size} Rd, <label>

Rd := [address, size]

Rd := [address, size]

Rd := [address, size]

Rd := [address, size]

Rd := [label, size]

[address, size] := Rd

[address, size] := Rd

[address, size] := Rd

[address, size] := Rd

Not available

1, N

2

3, N

4

5, N

Load or store
doubleword

Immediate offset

Post-indexed, immediate

5E

5E

<op>D Rd1, Rd2, [Rn {, #<offset>}]{!}

<op>D Rd1, Rd2, [Rn], #<offset>

Rd1 := [address], Rd2 := [address + 4]

Rd1 := [address], Rd2 := [address + 4]

[address] := Rd1, [address + 4] := Rd2

[address] := Rd1, [address + 4] := Rd2

6, 9

6, 9
 Register offset 5E <op>D Rd1, Rd2, [Rn, +/-Rm {, <opsh>}]{!} Rd1 := [address], Rd2 := [address + 4] [address] := Rd1, [address + 4] := Rd2 7, 9
 Post-indexed, register 5E <op>D Rd1, Rd2, [Rn], +/-Rm {, <opsh>} Rd1 := [address], Rd2 := [address + 4] [address] := Rd1, [address + 4] := Rd2 7, 9
 PC-relative 5E <op>D Rd1, Rd2, <label> Rd1 := [label], Rd2 := [label + 4] Not available 8, 9

Preload data or instruction §(PLD) §(PLI) §(PLDW) Assembler Action if <op> is PLD Action if <op> is PLI Action if <op> is PLDW Notes

 Immediate offset 5E 7 7MP <op> [Rn {, #<offset>}] Preload [address, 32] (data) Preload [address, 32] (instruction) Preload to Write [address, 32] (data) 1, C

Register offset 5E 7 7MP <op> [Rn, +/-Rm {, <opsh>}] Preload [address, 32] (data) Preload [address, 32] (instruction) Preload to Write [address, 32] (data) 3, C

PC-relative 5E 7 <op> <label> Preload [label, 32] (data) Preload [label, 32] (instruction) 5, C

Other memory operations § Assembler Action Notes

Load multiple Block data load

return (and exchange)

and restore CPSR

User mode registers

 LDM{IA|IB|DA|DB} Rn{!}, <reglist-PC>

LDM{IA|IB|DA|DB} Rn{!}, <reglist+PC>

LDM{IA|IB|DA|DB} Rn{!}, <reglist+PC>^

LDM{IA|IB|DA|DB} Rn, <reglist-PC>^

Load list of registers from [Rn]

Load registers, PC := [address][31:1] (§ 5T: Change to Thumb if [address][0] is 1)

Load registers, branch (§ 5T: and exchange), CPSR := SPSR. Exception modes only.

Load list of User mode registers from [Rn]. Privileged modes only.

N, I

I

I

I

Pop POP <reglist> Canonical form of LDM SP!, <reglist> N

Load
exclusive

Semaphore operation

Halfword or Byte

Doubleword

6

6K

6K

LDREX Rd, [Rn]

LDREX{H|B} Rd, [Rn]

LDREXD Rd1, Rd2, [Rn]

Rd := [Rn], tag address as exclusive access. Outstanding tag set if not shared address.
Rd, Rn not PC.

Rd[15:0] := [Rn] or Rd[7:0] := [Rn], tag address as exclusive access.
Outstanding tag set if not shared address. Rd, Rn not PC.

Rd1 := [Rn], Rd2 := [Rn+4], tag addresses as exclusive access
Outstanding tags set if not shared addresses. Rd1, Rd2, Rn not PC.

9

Store multiple Push, or Block data store

User mode registers

 STM{IA|IB|DA|DB} Rn{!}, <reglist>

STM{IA|IB|DA|DB} Rn{!}, <reglist>^

Store list of registers to [Rn]

Store list of User mode registers to [Rn]. Privileged modes only.

N, I

I

Push PUSH <reglist> Canonical form of STMDB SP!, <reglist> N

Store
exclusive

Semaphore operation

Halfword or Byte

Doubleword

6

6K

6K

STREX Rd, Rm, [Rn]

STREX{H|B} Rd, Rm, [Rn]

STREXD Rd, Rm1, Rm2, [Rn]

If allowed, [Rn] := Rm, clear exclusive tag, Rd := 0. Else Rd := 1. Rd, Rm, Rn not PC.

If allowed, [Rn] := Rm[15:0] or [Rn] := Rm[7:0], clear exclusive tag, Rd := 0. Else Rd := 1
Rd, Rm, Rn not PC.

If allowed, [Rn] := Rm1, [Rn+4] := Rm2, clear exclusive tags, Rd := 0. Else Rd := 1
Rd, Rm1, Rm2, Rn not PC.

10

Clear exclusive 6K CLREX Clear local processor exclusive tag C

Notes: availability and range of options for Load, Store, and Preload operations

Note ARM Word, B, D ARM SB, H, SH ARM T, BT Thumb-2 Word, B, SB, H, SH, D Thumb-2 T, BT, SBT, HT, SHT

1 offset: – 4095 to +4095 offset: –255 to +255 Not available offset: –255 to +255 if writeback, –255 to +4095 otherwise offset: 0 to +255, writeback not allowed

2 offset: – 4095 to +4095 offset: –255 to +255 offset: – 4095 to +4095 offset: –255 to +255 Not available

3 Full range of {, <opsh>} {, <opsh>} not allowed Not available <opsh> restricted to LSL #<sh>, <sh> range 0 to 3 Not available

4 Full range of {, <opsh>} {, <opsh>} not allowed Full range of {, <opsh>} Not available Not available

5 label within +/– 4092 of current instruction Not available Not available label within +/– 4092 of current instruction Not available

6 offset: –255 to +255 - - offset: –1020 to +1020, must be multiple of 4. -

7 {, <opsh>} not allowed - - Not available -

8 label within +/– 252 of current instruction - - Not available -

9 Rd1 even, and not r14, Rd2 == Rd1 + 1. - - Rd1 != PC, Rd2 != PC -

10 Rm1 even, and not r14, Rm2 == Rm1 + 1. - - Rm1 != PC, Rm2 != PC -

ARM and Thumb-2 Instruction Set
Quick Reference Card

Coprocessor operations § Assembler Action Notes

Data operations

Move to ARM register from coprocessor

Two ARM register move

Alternative two ARM register move

Move to coproc from ARM reg

Two ARM register move

Alternative two ARM register move

Loads and stores, pre-indexed

Loads and stores, zero offset

Loads and stores, post-indexed

5E

6

5E

6

CDP{2} <copr>, <op1>, CRd, CRn, CRm{, <op2>}

MRC{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>}

MRRC <copr>, <op1>, Rd, Rn, CRm

MRRC2 <copr>, <op1>, Rd, Rn, CRm

MCR{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>}

MCRR <copr>, <op1>, Rd, Rn, CRm

MCRR2 <copr>, <op1>, Rd, Rn, CRm

<op>{2} <copr>, CRd, [Rn, #+/-<offset8*4>]{!}

<op>{2} <copr>, CRd, [Rn] {, 8-bit copro. option}

<op>{2} <copr>, CRd, [Rn], #+/-<offset8*4>

op: LDC or STC. offset: multiple of 4 in range 0 to 1020.

op: LDC or STC.

op: LDC or STC. offset: multiple of 4 in range 0 to 1020.

Coprocessor defined

Coprocessor defined

Coprocessor defined

Coprocessor defined

Coprocessor defined

Coprocessor defined

Coprocessor defined

Coprocessor defined

Coprocessor defined

Coprocessor defined

C2

C2

C

C2

C

C2

C2

C2

Miscellaneous operations § Assembler Action Notes

Swap word

Swap byte

 SWP Rd, Rm, [Rn]

SWPB Rd, Rm, [Rn]

temp := [Rn], [Rn] := Rm, Rd := temp.

temp := ZeroExtend([Rn][7:0]), [Rn][7:0] := Rm[7:0], Rd := temp

A, D

A, D

Store return state

Return from exception

Breakpoint

Secure Monitor Call

Supervisor Call

6

6

5

Z

SRS{IA|IB|DA|DB} SP{!}, #<p_mode>

RFE{IA|IB|DA|DB} Rn{!}

BKPT <imm16>

SMC <imm4>

SVC <imm24>

[SPm] := LR, [SPm + 4] := CPSR

PC := [Rn], CPSR := [Rn + 4]

Prefetch abort or enter debug state. 16-bit bitfield encoded in instruction.

Secure Monitor Call exception. 4-bit bitfield encoded in instruction. Formerly SMI.

Supervisor Call exception. 24-bit bitfield encoded in instruction. Formerly SWI.

C, I

C, I

C, N

N

No operation 6K NOP None, might not even consume any time. N, V

Hints

Debug Hint

Data Memory Barrier

Data Synchronization Barrier

Instruction Synchronization Barrier

Set event

Wait for event

Wait for interrupt

Yield

7

7

7

7

6K

6K

6K

6K

DBG

DMB

DSB

ISB

SEV

WFE

WFI

YIELD

Provide hint to debug and related systems.

Ensure the order of observation of memory accesses.

Ensure the completion of memory accesses,

Flush processor pipeline and branch prediction logic.

Signal event in multiprocessor system. NOP if not implemented.

Wait for event, IRQ, FIQ, Imprecise abort, or Debug entry request. NOP if not implemented.

Wait for IRQ, FIQ, Imprecise abort, or Debug entry request. NOP if not implemented.

Yield control to alternative thread. NOP if not implemented.

C

C

C

N

N

N

N

Notes

A

B

C

C2

D

G

I

L

N

Not available in Thumb state.

Can be conditional in Thumb state without having to be in an IT block.

Condition codes are not allowed in ARM state.

The optional 2 is available from ARMv5. It provides an alternative operation. Condition codes are not
allowed for the alternative form in ARM state.

Deprecated. Use LDREX and STREX instead.

Updates the four GE flags in the CPSR based on the results of the individual operations.

IA is the default, and is normally omitted.

ARM: <imm8m>. 16-bit Thumb: multiple of 4 in range 0-1020. 32-bit Thumb: 0-4095.

Some or all forms of this instruction are 16-bit (Narrow) instructions in Thumb-2 code. For details
see the Thumb 16-bit Instruction Set (UAL) Quick Reference Card.

P

Q

R

S

T

U

V

Rn can be the PC in Thumb state in this instruction.

Sets the Q flag if saturation (addition or substraction) or overflow (multiplication) occurs. Read and
reset the Q flag using MRS and MSR.

<sh> range is 1-32 in the ARM instruction.

The S modifier is not available in the Thumb-2 instruction.

Not available in ARM state.

Not allowed in an IT block. Condition codes not allowed in either ARM or Thumb state.

The assembler inserts a suitable instruction if the NOP instruction is not available.

ARM and Thumb-2 Instruction Set
Quick Reference Card

Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU
and other countries, except as otherwise stated below in this proprietary notice. Other brands and names
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be
liable for any loss or damage arising from the use of any information in this reference card, or any error
or omission in such information, or any incorrect use of the product.

Document Number
ARM QRC 0001M

Change Log

Issue Date Change Issue Date Change
A June 1995 First Release B Sept 1996 Second Release
C Nov 1998 Third Release D Oct 1999 Fourth Release
E Oct 2000 Fifth Release F Sept 2001 Sixth Release
G Jan 2003 Seventh Release H Oct 2003 Eighth Release
I Dec 2004 Ninth Release J May 2005 RVCT 2.2 SP1
K March 2006 RVCT 3.0 L March 2007 RVCT 3.1
M Sept 2008 RVCT 4.0

ARM architecture versions

n ARM architecture version n and above

nT, nJ T or J variants of ARM architecture version n and above

5E ARM v5E, and 6 and above

T2 All Thumb-2 versions of ARM v6 and above

6K ARMv6K and above for ARM instructions, ARMv7 for Thumb

7MP ARMv7 architectures that implement Multiprocessing Extensions

Z All Security extension versions of ARMv6 and above

RM ARMv7-R and ARMv7-M only

XS XScale coprocessor instruction

Flexible Operand 2

Immediate value #<imm8m>

Register, optionally shifted by constant (see below) Rm {, <opsh>}

Register, logical shift left by register Rm, LSL Rs

Register, logical shift right by register Rm, LSR Rs

Register, arithmetic shift right by register Rm, ASR Rs

Register, rotate right by register Rm, ROR Rs

Condition Field

Mnemonic Description Description (VFP)

EQ Equal Equal

NE Not equal Not equal, or unordered

CS / HS Carry Set / Unsigned higher or same Greater than or equal, or unordered

CC / LO Carry Clear / Unsigned lower Less than

MI Negative Less than

PL Positive or zero Greater than or equal, or unordered

VS Overflow Unordered (at least one NaN operand)

VC No overflow Not unordered

HI Unsigned higher Greater than, or unordered

LS Unsigned lower or same Less than or equal

GE Signed greater than or equal Greater than or equal

LT Signed less than Less than, or unordered

GT Signed greater than Greater than

LE Signed less than or equal Less than or equal, or unordered

AL Always (normally omitted) Always (normally omitted)

All ARM instructions (except those with Note C or Note U) can have any one of these condition codes after the
instruction mnemonic (that is, before the first space in the instruction as shown on this card). This condition is
encoded in the instruction.

All Thumb-2 instructions (except those with Note U) can have any one of these condition codes after the
instruction mnemonic. This condition is encoded in a preceding IT instruction (except in the case of
conditional Branch instructions). Condition codes in instructions must match those in the preceding IT
instruction.

On processors without Thumb-2, the only Thumb instruction that can have a condition code is B <label>.

Register, optionally shifted by constant

(No shift)

Logical shift left

Logical shift right

Arithmetic shift right

Rotate right

Rotate right with extend

Rm

Rm, LSL #<shift>

Rm, LSR #<shift>

Rm, ASR #<shift>

Rm, ROR #<shift>

Rm, RRX

Same as Rm, LSL #0

Allowed shifts 0-31

Allowed shifts 1-32

Allowed shifts 1-32

Allowed shifts 1-31

Processor Modes

16 User

17 FIQ Fast Interrupt

18 IRQ Interrupt

19 Supervisor

23 Abort

27 Undefined

31 System

Prefixes for Parallel Instructions

S Signed arithmetic modulo 28 or 216, sets CPSR GE bits

Q Signed saturating arithmetic

SH Signed arithmetic, halving results

U Unsigned arithmetic modulo 28 or 216, sets CPSR GE bits

UQ Unsigned saturating arithmetic

UH Unsigned arithmetic, halving results

PSR fields (use at least one suffix)

Suffix Meaning

c Control field mask byte PSR[7:0]

f Flags field mask byte PSR[31:24]

s Status field mask byte PSR[23:16]

x Extension field mask byte PSR[15:8]

