

 barrgroup.com/coding-standard

 1

Embedded C Coding Standard

Table of Contents

Introduction	 ..	 5	
Purpose	 of	 the	 Standard	 ..	 5	
Guiding	 Principles	 ..	 6	
Enforcement	 Guidelines	 ...	 10	
Deviation	 Procedure	 ..	 10	
Acknowledgements	 ..	 11	
Legal	 Notices	 ...	 12	

1	 General	 Rules	 ...	 13	

1.1	 Which	 C?	 ..	 13	
1.2	 Line	 Widths	 ..	 15	
1.3	 Braces	 ...	 16	
1.4	 Parentheses	 ..	 18	
1.5	 Common	 Abbreviations	 ..	 19	
1.6	 Casts	 ..	 20	
1.7	 Keywords	 to	 Avoid	 ...	 21	
1.8	 Keywords	 to	 Frequent	 ..	 22	

2	 Comments	 ..	 25	

2.1	 Acceptable	 Formats	 ...	 25	
2.2	 Location	 and	 Content	 ..	 27	

3	 White	 Space	 ...	 32	

3.1	 Spaces	 ...	 32	
3.2	 Alignment	 ..	 35	

Embedded C Coding Standard

 2

3.3	 Blank	 Lines	 ..	 36	
3.4	 Indentation	 ...	 37	
3.5	 Tabs	 ...	 39	
3.6	 Linefeeds	 ..	 40	

4	 Modules	 ..	 41	

4.1	 Naming	 Conventions	 ..	 41	
4.2	 Header	 Files	 ..	 43	
4.3	 Source	 Files	 ...	 45	
4.4	 File	 Templates	 ..	 47	

5	 Data	 Types	 ...	 48	

5.1	 Naming	 Conventions	 ..	 48	
5.2	 Fixed-‐Width	 Integers	 ...	 50	
5.3	 Signed	 Integers	 ..	 52	
5.4	 Floating	 Point	 ...	 54	
5.5	 Structures	 and	 Unions	 ...	 56	

6	 Procedures	 ..	 57	

6.1	 Naming	 Conventions	 ..	 57	
6.2	 Functions	 ...	 59	
6.3	 Function-‐Like	 Macros	 ..	 61	
6.4	 Tasks	 ...	 63	
6.5	 Interrupt	 Service	 Routines	 ..	 65	

7	 Variables	 ..	 67	

7.1	 Naming	 Conventions	 ..	 67	
7.2	 Initialization	 ...	 70	

 barrgroup.com/coding-standard

 3

8	 Expressions	 and	 Statements	 ...	 72	
8.1	 Variable	 Declarations	 ...	 72	
8.2	 If-‐Else	 Statements	 ...	 72	
8.3	 Switch	 Statements	 ..	 75	
8.4	 Loops	 ..	 77	
8.5	 Unconditional	 Jumps	 ...	 79	
8.6	 Equivalence	 Tests	 ...	 80	

Bibliography	 ..	 81	

Appendix	 A:	 Header	 File	 Template	 ..	 83	

Appendix	 B:	 Source	 File	 Template	 ...	 84	

Appendix	 C:	 Standard	 Abbreviations	 	 85	

Embedded C Coding Standard

 4

 barrgroup.com/coding-standard

 5

Introduction

Purpose of the Standard

The primary reason for adopting this coding standard is
to reduce the number of bugs present in new embedded
software (a.k.a., firmware) and in code later added or
modified by maintainers. Whenever it is generally the case
that one rule chosen from a set of alternatives has the
ability to keep bugs out, that is the rule we recommend.
Specific rules in this document that describe techniques to
eliminate or reduce the number of bugs in a program are
tagged with the Zero Bugs...Period image below.
Following these rules as a set will help you keep bugs out
in the first place.

Of course, a coding standard cannot by itself eliminate
all of the bugs from a complex embedded system. Thus
this coding standard should be applied as part of a broader
embedded software development and quality assurance
process. An appropriate process may be lightweight but
must emphasize the importance of software and system
architecture as well as programmer skills training and

Embedded C Coding Standard

 6

should include at least the use of design reviews, code
reviews, and version control.

Other important reasons for adopting this coding
standard include increasing the readability and portability
of source code, so that firmware may be maintained and
reused at lower cost. A coding standard benefits a team of
developers and the larger organization by reducing the
time required by individuals to understand or review the
work of peers.

Guiding Principles

This coding standard was developed in accordance
with the following guiding principles, which served to
focus the authors’ attention and eliminate conflict over
items that are sometimes viewed by programmers as
personal stylistic preferences:

1. Individual programmers do not own the software
they write. All software development is work for
hire for an employer or a client and, thus, the end
product should be constructed in a workmanlike
manner.

2. It is cheaper and easier to prevent a bug from
creeping into code than it is to find and kill it after it
has entered. A key strategy in this fight is to write
code in which the compiler, linker, or a static

 barrgroup.com/coding-standard

 7

analysis tool can detect bugs automatically—i.e.,
before the code is allowed to execute.

3. For better or worse (well, mostly worse), the ISO
“standard1” C programming language allows for a
significant amount of variability in the decisions
made by compiler implementers. These many so-
called “implementation-defined,” “unspecified,”
and “undefined” behaviors, along with “locale-
specific options”, mean that programs compiled
from identical C source code may behave very
differently at run-time. Such gray areas in the
language standard greatly reduce the portability of
C programs that are not carefully crafted.

4. This coding standard prioritizes code reliability and
portability above execution efficiency or
programmer convenience.

5. There are many sources of bugs in software
programs. The original programmer creates some
bugs. Other bugs result from misunderstandings by
those who later maintain, extend, port, and/or reuse
the code.

1 [C90] and [C99]

Embedded C Coding Standard

 8

• The number and severity of bugs introduced
by the original programmer can be reduced
through disciplined conformance with certain
coding practices, such as the placement of
constants on the left side of an equivalence
(==) test.

• The number and severity of bugs introduced
by maintenance programmers can also be
influenced by the original programmer. For
example, appropriate use of portable fixed-
width integer types (e.g., int32_t) ensures that
no future port of the code will encounter an
unexpected overflow.

• The number and severity of bugs introduced
by maintenance programmers can also be
reduced through the disciplined use of
consistent commenting and stylistic practices,
so that everyone in an organization can more
easily understand the meaning and proper
use of variables, functions, and modules.

 barrgroup.com/coding-standard

 9

6. MISRA’s Guidelines for the Use of the C Language2
are more restrictive than this coding standard—but
worthy of study. Deviation from any MISRA-C
required or advisory rule should be carefully
considered. The authors of the MISRA-C guidelines
are knowledgeable of the risks of the use of C in
safety-critical systems. Our few known differences
of opinion with [MISRA04] are identified in the
footnotes to this standard. Followers of this coding
standard may wish to adopt the other rules of
MISRA-C in addition to the rules found here.

7. To be effective, coding standards must be
enforceable. Wherever two or more competing rules
would be similarly able to prevent bugs but only
one of those rules can be enforced automatically, the
more enforceable rule is recommended.

In the absence of a needed rule or a conflict between
rules, the spirit of the above principles should be applied to
guide the decision.

2 [MISRA98] and [MISRA04]

Embedded C Coding Standard

 10

Enforcement Guidelines

Conformance with this coding standard is mandatory.
Non-conforming code shall be made to meet these
minimum standards. Non-conforming code shall be
detected and removed via automated scans, formal code
inspections, or informal discovery.

There are a number of static analysis tools that can be
used to check compliance with many of the rules of this
specific coding standard. Static analysis tools that have
been specifically adapted to the rules in this book include

• LDRArules™ by LDRA (http://www.ldra.com),

• RSM from M Squared Technologies
(http://www.msquaredtechnologies.com/m2rsm/),

• PC-Lint by Gimpel (http://www.gimpel.com), and

• eclair by bugseng (http://www.bugseng.com).

For the latest information on automated enforcement
please visit our website at

http://barrgroup.com/coding-standard

Deviation Procedure

All code that is submitted for a release of the software
shall conform to these standards, unless a deviation has
been permitted.

 barrgroup.com/coding-standard

 11

At the project level, it is acceptable for another coding
standard (such as the coding standard of a client or
partner) to be adopted instead of this one. In that case, all
members of the project team should follow the selected
coding standard.

At the module level, it is only acceptable to deviate
from this coding standard with the approval of the project
manager. The reason for the deviation and the approver’s
name shall be stated as close as possible to the scope of the
deviation. For example, a single deviation in a function
should be documented in a block comment within or above
that function, whichever is most helpful to the next reader.

Acknowledgements

Though my name is the only one on the front of this
book, the development of this Embedded C Coding
Standard was a collaborative effort, involving many of us
at Barr Group plus other members of the embedded
software community. I am specifically grateful to Nigel
Jones, Jack Ganssle, Jean Labrosse, and Miro Samek for
publishing earlier firmware coding standards; to Joe Perret
and Salomon Singer for getting this project underway in a
big way in 2009; to Andrew Girson for the numerous
discussions; to Elizabeth Gallauresi for handling various
details of the first edition; and to all of the many technical

Embedded C Coding Standard

 12

reviewers who provided important feedback, including
Mike Ficco, JR Simma, Dan Smith, Robert Van Rooyen, and
Michael Wilk as well as several of the other folks already
identified.

Legal Notices

This document as well as the selection and arrangement
of the rules it comprises is Copyright © 2013 by Barr
Group. It is permissible for individuals, companies, and
institutions to adopt all or a subset of the coding rules
herein; indeed we hope that many more will. This may be
done simply by identifying the “Barr Group Embedded C
Coding Standard” as the source of your rules and retaining
this paragraph in its entirety. All other rights in copyright
law are reserved by Barr Group.

To learn about acquiring the rights to an editable (e.g.,
Microsoft Word format) version of this coding standard to
adapt to your needs, please call (866) 65-EMBED or email
embed@barrgroup.com.

Barr Group and the Barr Group logo are registered
trademarks of Integrated Embedded, LLC. Other
trademarks used in this book are property of their
respective owners.

 barrgroup.com/coding-standard

 13

1 General Rules

1.1 Which C?

Rules:

a. All programs shall be written to comply with the
[C99] version of the ISO Standard for the C
Programming Language.3

b. Whenever a C++ compiler is used, appropriate
compiler options shall be set to restrict the language
to the selected version of ISO C.

c. The use of proprietary compiler language keyword
extensions, #pragmas, and inline assembly shall be
kept to the minimum necessary to get the job done
and be localized to a small number of device driver
modules that interface directly to hardware.4

3 This deviates from [MISRA04] Rule 1.1. Compilers compatible
with [C99] offer many valuable improvements, including
support for the fixed-width integer types, C++ style comments,
the ability to declare automatic variables where needed, and
inline functions. In the absence of a [C99]-compliant compiler, a
[C90]-compliant compiler shall be used.
4 This appears to deviate from [MISRA04] Rule 1.1, but is
consistent with Rules 2.1 and 3.4, as well as MISRA-forseen
deviations from Rule 1.1.

Embedded C Coding Standard

 14

Reasoning: Even “standard” C varies by compiler, but we
need as common of a platform as we can find to make
possible the rules and enforcement mechanisms that
follow. C++ is a different language and the use of C++ and
C should not be mixed in the same module.

Exceptions: These rules may be ignored in the case that the
compiler supports only an older version of the C standard.

Enforcement: These rules shall be enforced during code
reviews.

 barrgroup.com/coding-standard

 15

1.2 Line Widths

Rules:

a. The length of all lines in a program shall be limited
to a maximum of 80 characters.

Reasoning: Code reviews and other examinations are from
time-to-time conducted on printed pages, which must be
free of distracting line wraps as well as missing (i.e., past
the right margin) characters. Line width rules also ease on-
screen side-by-side code differencing.

Exceptions: None.

Enforcement: Violations of this rule shall be detected by an
automated scan during each build.

Embedded C Coding Standard

 16

1.3 Braces

Rules:

a. Braces shall always surround the blocks of code
(a.k.a., compound statements), following if, else,
switch, while, do, and for statements; single
statements and empty statements following these
keywords shall also always be surrounded by
braces.

b. Each left brace (‘{‘) shall appear by itself on the line
below the start of the block it opens. The
corresponding right brace (‘}’) shall appear by itself
in the same position the appropriate number of lines
later in the file.

Reasoning: There is considerable risk associated with the
presence of empty statements and single statements that
are not surrounded by braces. Code constructs like this are
often associated with bugs when nearby code is changed or
commented out. This risk is entirely eliminated by the
consistent use of braces. The placement of the left brace on
the following line allows for easy visual checking for the
corresponding right brace.

Exceptions: None.

 barrgroup.com/coding-standard

 17

Enforcement: The appearance of a left brace after each if,
else, switch, while, do, and for shall be enforced by an
automated tool at build time. The same or another tool
shall be used to enforce that all left braces are paired with
right braces at the same level of indentation.

Embedded C Coding Standard

 18

1.4 Parentheses

Rules:

a. Do not rely on C’s operator precedence rules, as they
may not be obvious to those who maintain the code.
To aid clarity, use parentheses (and/or break long
statements into multiple lines of code) to ensure
proper execution order within a sequence of
operations.

b. Unless it is a single identifier or constant, each
operand of the logical && and || operators shall be
surrounded by parentheses.

Example:

if ((depth_in_cm > 0) && (depth_in_cm < MAX_DEPTH))

{

 depth_in_ft = convert_depth_to_ft(depth_in_cm);

}

return result;

Exceptions: None.

Enforcement: These rules shall be enforced during code
reviews.

 barrgroup.com/coding-standard

 19

1.5 Common Abbreviations

Rules:

a. Abbreviations and acronyms should generally be
avoided unless their meanings are widely and
consistently understood in the engineering
community. The table below contains a list of
commonly used abbreviations and their meanings.

b. A table of additional project-specific abbreviations
and acronyms shall be maintained in a version-
controlled document.

Examples: See Appendix C.

Exceptions: Project-specific abbreviations that do not
conflict with the common abbreviations in this standard
may be added in the manner described above.

Enforcement: Consistent use of these abbreviations shall be
enforced during code reviews.

Embedded C Coding Standard

 20

1.6 Casts

Rules:

a. Each cast shall feature an associated comment
describing how the code ensures proper behavior
across the range of possible values on the right side.

Example:

int

abs (int arg)

{

 return ((arg < 0) ? -arg : arg);

}

uint16_t sample = adc_read(ADC_CHANNEL(1));

result = abs((int) sample); // 32-bit int assumed.

Reasoning: Casting is dangerous. In the example above,
unsigned 16-bit “sample” can take a larger range of
positive values than a signed 16-bit integer. In that case,
the absolute value will be incorrect as well. Thus there is a
possible loss of precision (i.e., overflow) if int is only
16-bit, as the C standard permits.

Exceptions: None.

Enforcement: These rules shall be enforced during code
reviews.

 barrgroup.com/coding-standard

 21

1.7 Keywords to Avoid

Rules:

a. The auto keyword shall not be used.

b. The register keyword shall not be used.

c. The goto keyword shall not be used.

d. The continue keyword shall not be used.

e. The break keyword shall not be used outside of a
switch statement.

Reasoning: The auto keyword is an unnecessary historical
feature of the language. Some other features of the C
language serve a purpose, but create more headaches than
value. For example, the register keyword presumes the
programmer is smarter than the compiler. Keywords goto,
continue, and break often lead to spaghetti code.

Exceptions: None.

Enforcement: The presence of these keywords in new or
modified source code shall be detected and reported via an
automated tool at each build.

Embedded C Coding Standard

 22

1.8 Keywords to Frequent

Rules:

a. The static keyword shall be used to declare all
functions and variables that do not need to be visible
outside of the module in which they are declared.

b. The const keyword shall be used whenever
appropriate. Examples include:

i. To declare variables that should not be
changed after initialization,

ii. To define call-by-reference function
parameters that should not be modified (e.g.,
char const * param),

iii. To define fields in structs and unions that
should not be modified (e.g., in a struct
overlay for memory-mapped I/O peripheral
registers), and

iv. As a strongly typed alternative to #define for
numerical constants.

 barrgroup.com/coding-standard

 23

c. The volatile keyword shall be used whenever
appropriate. Examples include:

i. To declare a global variable accessible (by
current use or scope) by any interrupt service
routine,

ii. To declare a global variable accessible (by
current use or scope) by two or more tasks,

iii. To declare a pointer to a memory-mapped
I/O peripheral register set (e.g., timer_t
volatile * const p_timer), and

iv. To declare a delay loop counter.

Reasoning: C’s static keyword has several meanings. At
the module-level, global variables and functions declared
static are protected from external use. Heavy-handed use
of static in this way thus decreases coupling between
modules. The const and volatile keywords are even more
important. The upside of using const as much as possible
is compiler-enforced protection from unintended writes to
data that should be read-only. Proper use of volatile
eliminates a whole class of difficult-to-detect bugs by
preventing compiler optimizations that would eliminate
requested reads or writes to variables or registers.5

5 Anecdotal evidence suggests that programmers unfamiliar
with the volatile keyword think their compiler’s optimization
feature is more broken than helpful and disable optimization.
We believe that the vast majority of embedded systems contain

Embedded C Coding Standard

 24

Exceptions: None.

Enforcement: Appropriate use of these important
keywords shall be enforced during code reviews.

bugs waiting to happen due to missing volatile keywords. Such
bugs typically manifest themselves as “glitches” or only after
changes are made to a “proven” code base.

 barrgroup.com/coding-standard

 25

2 Comments

2.1 Acceptable Formats

Rules:

a. Single-line comments in the C++ style (i.e., preceded
by //) are a useful and acceptable alternative to
traditional C style comments (i.e., /* … */).6

b. Comments shall never be nested.

c. Comments shall never be used to disable a block of
code, even temporarily.

i. To temporarily disable a block of code, use
the preprocessor’s conditional compilation
feature (e.g., #if 0 … #endif). No block of
temporarily disabled code shall remain in the
source code of a release candidate.

6 This is a deviation from [MISRA04] Rule 2.2, which we feel will
not affect the number or severity of firmware bugs. The C++
“single-line” style makes comments easier to align and maintain.
In addition this deviation is consistent with our choice of the
[C99] language, which officially added single-line comments to
the C language.

Embedded C Coding Standard

 26

ii. Any line or block of code that exists
specifically to increase the level of debugging
output information shall be surrounded by
#ifndef NDEBUG … #endif.7 In this way,
useful debug code may be maintained in
production code, as the ability to gather
additional information is often desirable long
after development is done.

Reasoning: Nested comments and commented-out code
both run the risk of allowing unexpected snippets of code
to be compiled into the final executable. This can happen,
for example, in the case of sequences such as /* code-out /*
comment */ code-in */.

Exceptions: None.

Enforcement: The use of only acceptable comment formats
can be only partially enforced by the compiler or static
analysis. The avoidance of commented-out code, for
example, must be enforced during code reviews.

7 Our choice of negative-logic NDEBUG is deliberate, as that
constant is associated with disabling the assert() macro. In both
cases, the programmer acts to disable the verbose code. It’s also
good to have just one of these #defines to keep track of.

 barrgroup.com/coding-standard

 27

2.2 Location and Content

Rules:

a. All comments shall be written in clear and complete
sentences, with proper spelling and grammar and
appropriate punctuation.

b. The most useful comments generally precede a
block of code that performs one step of a larger
algorithm.8 A blank line shall follow each such code
block. The comments in front of the block should be
at the same indentation level.

c. Avoid explaining the obvious. Assume the reader
knows the C programming language. For example,
end-of-line comments should only be used in
exceptional circumstances, where the meaning of
that one line of code may be unclear from the
variable and function names and operations alone
but where a short comment makes it clear. Avoid
writing unhelpful and redundant comments such as
“shift left 2 bits”.

8 It is a good practice to write the comment blocks first, as you
should not begin the coding until you can explain the logic,
algorithm, or sequence of steps in words.

Embedded C Coding Standard

 28

d. The number and length of individual comment
blocks shall be proportional to the complexity of the
code they describe.

e. Whenever an algorithm or technical detail has come
from a published source, the comment shall include
a sufficient reference to the original source (via book
title, website URL, or other details) to allow a reader
of the code to find the cited reference material.

f. Whenever a flow-chart or other diagram is needed
to sufficiently document the code, the drawing shall
be maintained with the source code under version
control and the comments should reference the
diagram by file name or title.

g. All assumptions shall be spelled out in comments.9

h. Each module and function shall be commented in a
manner suitable for automatic documentation
generation via Doxygen (www.doxygen.org).

9 Of course, a set of design-by-contract tests or assertions is even
better than comments.

 barrgroup.com/coding-standard

 29

i. Use the following capitalized comment markers to
highlight important issues:

i. “WARNING:” alerts a maintainer there is
risk in changing this code. For example, that
a delay loop counter’s terminal value was
determined empirically and may need to
change when the code is ported or the
optimization level tweaked.

ii. “NOTE:” provides descriptive comments
about the “why” of a chunk of code—as
distinguished from the “how” usually placed
in comments. For example, that a chunk of
driver code deviates from the datasheet
because there was an errata in the chip. Or
that an assumption is being made by the
original programmer.

iii. “TODO:” indicates an area of the code is still
under construction and explains what
remains to be done. When appropriate, an
all-caps programmer name or set of initials
may be included before the word TODO (e.g.,
“MJB TODO:”).

Embedded C Coding Standard

 30

Example:

// Step 1: Batten down the hatches.

for (int hatch = 0; hatch < NUM_HATCHES; hatch++)

{

 if (hatch_is_open(hatches[hatch])

 {

 hatch_close(hatches[hatch]);

 }

}

// Step 2: Raise the mizzenmast.

// TODO: Define mizzenmast driver API.

Reasoning: Following these rules results in good
comments. And good comments result in good code.
Unfortunately, it is easy for source code and
documentation to drift over time. The best way to prevent
this is to keep the documentation as close to the code as
possible. Doxygen is a useful tool to regenerate
documentation describing the modules, functions, and
parameters of a project as that code is changed.

Exceptions: Individual projects may standardize the use of
Doxygen features of beyond those in the template files.

 barrgroup.com/coding-standard

 31

Enforcement: The quality of comments shall be evaluated
during code reviews. Code reviewers should be on the
lookout both that the comments accurately describe the
code and that they are clear, concise, and valuable.
Rebuilds of Doxygen-generated documentation files, for
example in HTML or PDF, shall be automated and made
part of the software build process.

Embedded C Coding Standard

 32

3 White Space

3.1 Spaces

Rules:

a. Each of the keywords if, else, while, for, switch, and
return shall always be followed by one space.

b. Each of the assignment operators =, +=, -=, *=, /=,
%=, &=, |=, ^=, ~=, and != shall always be preceded
and followed by one space.

c. Each of the binary operators +, -, *, /, %, <, <=, >,
>=, ==, !=, <<, >>, &, |, ^, &&, and || shall always
be preceded and followed by one space.

d. Each of the unary operators +, -, ++, --, !, and ~, shall
always be written without a space on the operand
side and with one space on the other side.

e. The pointer operators * and & shall be written with
white space on each side within declarations but
otherwise without a space on the operand side.

f. The ? and : characters that comprise the ternary
operator shall each always be preceded and
followed by one space.

 barrgroup.com/coding-standard

 33

g. The structure pointer and structure member
operators (-> and ., respectively) shall always be
without surrounding spaces.

h. The left and right brackets of the array subscript
operator ([and]) shall always be without
surrounding spaces.

i. Expressions within parentheses shall always have
no spaces adjacent to the left and right parenthesis
characters.

j. The left and right parentheses of the function call
operator shall always be without surrounding
spaces, except that the function declaration shall
feature one space between the function name and
the left parenthesis to allow that one particular
mention of the function name to be easily located.

k. Each comma separating function parameters shall
always be followed by one space.

l. Each semicolon separating the elements of a for
statement shall always be followed by one space.

m. Each semicolon shall follow the statement it
terminates without a preceding space.

Embedded C Coding Standard

 34

Reasoning: The placement of white space is as important
as the placement of the text of a program. Good use of
white space reduces eyestrain and increases the ability of
the author and reviewers of the code to spot potential bugs.

Exceptions: None.

Enforcement: These rules shall be enforced by an
automated tool such as a code beautifier.

 barrgroup.com/coding-standard

 35

3.2 Alignment

Rules:

a. The names of variables within a series of
declarations shall have their first characters aligned.

b. The names of struct and union members shall have
their first characters aligned.

c. The assignment operators within a block of adjacent
assignment statements shall be aligned.

d. The # in a preprocessor directive shall always be
located in column 1, except when indenting within a
#if or #ifdef sequence.

Reasoning: Visual alignment emphasizes similarity. A
series of consecutive lines containing variable declarations
is easily spotted and understood as a block. Blank lines
and unrelated alignments should be used to visually
distinguish unrelated blocks of code appearing nearby.

Exceptions: None.

Enforcement: These rules shall be enforced during code
reviews.

Embedded C Coding Standard

 36

3.3 Blank Lines

Rules:

a. No line of code shall contain more than one
statement.

b. There shall be a blank line before and after each
natural block of code. Examples of natural blocks of
code are loops, if-else and switch statements, and
consecutive declarations.

c. Each source file shall have a blank line at the end.10

Reasoning: Appropriate placement of white space
provides visual separation and thus makes code easier to
read and understand, just as the white space areas between
paragraphs of this coding standard aid readability.

Exceptions: None

Enforcement: These rules shall be enforced during code
reviews.

10 This is for portability, as some compilers require the blank line.

 barrgroup.com/coding-standard

 37

3.4 Indentation

Rules:

a. Each indentation level within a module should
consist of 4 spaces.

b. Within a switch statement, each case statement
should be indented; the contents of the case block
should be indented once more.

c. Whenever a line of code is too long to fit within the
maximum line width, indent the second and any
subsequent lines in the most readable manner
possible.

Example:

sys_error_handler(int err)

{

 switch (err)

 {

 case ERR_THE_FIRST:

 ...

 break;

 default:

 ...

 break;

 }

Embedded C Coding Standard

 38

 // Purposefully misaligned indentation; see why?

 if ((first_very_long_comparison_here

 && second_very_long_comparison_here)

 || third_very_long_comparison_here)

 {

 ...

 }

}

Reasoning: Fewer indentation spaces increase the risk of
visual confusion while more spaces increases the likelihood
of line wraps.

Exceptions: The indentation in legacy code modules that
are indented differently shall not be changed unless it is
anticipated that a significant amount of the code will be
modified. In that case, the indentation across the entire
module shall be changed in a distinct version control step.
This is because a side effect of changing indentation is the
loss of difference tracking capability in the version control
system. It is thus valuable to separate the code changes
from the indent changes.

Enforcement: An automated tool shall be provided to
programmers to convert indentations of other sizes
automatically. This tool shall modify all new or changed
code prior to each build.

 barrgroup.com/coding-standard

 39

3.5 Tabs

Rules:

a. The tab character shall never appear within any
module.

Reasoning: The width of the tab character varies by editor
and programmer preference, making consistent visual
layout a continual source of headaches during code
reviews and maintenance.

Exceptions: Existing tabs in legacy code modules shall not
be eliminated unless it is anticipated that a significant
amount of the code will be modified. In that case, the tabs
shall be eliminated from the entire module in a distinct
version control step. This is because a side effect of
eliminating tabs is the loss of difference tracking capability
in the version control system. It is thus valuable to
separate the code changes from the white space changes.

Enforcement: The absence of the tab character in new or
modified code shall be confirmed via an automated scan at
each build.

Embedded C Coding Standard

 40

3.6 Linefeeds

Rules:

a. Whenever possible, all source code lines shall end
only with the single character LF (0x0A).

Reasoning: The multi-character sequence CR-LF (0x0D
0x0A) is more likely to cause problems in a multi-platform
environment than the single character LF. One such
problem is associated with multi-line preprocessor macros
on Unix platforms.

Exceptions: None.

Enforcement: Whenever possible, programmer’s editors
shall be configured to use LF. In addition, an automated
tool shall scan all new or modified source code files during
each build, replacing each CR-LF sequence with an LF.

 barrgroup.com/coding-standard

 41

4 Modules

4.1 Naming Conventions

Rules:

a. All module names shall consist entirely of lowercase
letters, numbers, and underscores. No spaces shall
appear within the file name.

b. All module names shall be unique in their first eight
characters, with .h and .c used for the suffix for
header and source files respectively.

c. No module name shall share the name of a standard
library header file. For example, modules shall not
be named “stdio” or “math”.

d. Any module containing a main() function shall have
the word “main” in its filename.

Embedded C Coding Standard

 42

Reasoning: Multi-platform work environments (e.g., Linux
and Windows) are the norm rather than the exception. To
support the widest range, file names should meet the
constraints of the least capable platforms. Additionally,
mixed case names are error prone due to the possibility of
similarly-named but differently-capitalized files becoming
confused. The inclusion of “main” in a file name is an aid
to the maintainer that has proven useful.11

Exceptions: None.

Enforcement: An automated tool shall confirm that all file
names used in each build are consistent with these rules.

11 We have encountered the case of a company with one project
having over 200 files containing a function called main().

 barrgroup.com/coding-standard

 43

4.2 Header Files

Rules:

a. There shall always be precisely one header file for
each source file and they shall always have the same
root name.

b. Each header file shall contain a preprocessor guard
against multiple inclusion, as shown in the example
below.

c. The header file shall identify only the procedures,
constants, and data types (via prototypes or macros,
#define, and struct/union/enum typedefs,
respectively) about which it is strictly necessary for
other modules to know about.

i. It is recommended that no variable be defined
(via extern) in a header file.

ii. No storage for any variable shall be declared
in a header file.

d. No header file shall contain a #include statement.

Example:

#ifndef _ADC_H

#define _ADC_H

...

Embedded C Coding Standard

 44

#endif /* _ADC_H */

Reasoning: The C language standard gives all variables
and functions global scope by default. The downside of
this is unnecessary (and dangerous) coupling between
modules. To reduce inter-module coupling, keep as many
procedures, constants, data types, and variables as possible
hidden within a module’s source file.

Exceptions: It is acceptable to deviate from the common
root name rule for the core application module (e.g., if
“foomain.c” contains main(), its header file may be
“foo.h”). Under certain circumstances it may be necessary
to share a global variable across modules. Whenever this is
done, such a variable shall be named with the module’s
prefix, declared volatile, and always protected from race
conditions at each location of access.

Enforcement: These header file rules shall be enforced
during code reviews.

 barrgroup.com/coding-standard

 45

4.3 Source Files

Rules:

a. Each source file shall include only the behaviors
appropriate to control one “entity”. Examples of
entities include encapsulated data types, active
objects, peripheral drivers (e.g., for a UART), and
communication protocols or layers (e.g., ARP).

b. Each source file shall be comprised of some or all of
the following sections, in the order listed: comment
block; include statements; data type, constant, and
macro definitions; static data declarations; private
function prototypes; public function bodies; then
private function bodies.

c. Each source file shall always #include the header file
of the same name (e.g., file adc.c should #include
“adc.h”), to allow the compiler to confirm that each
public function and its prototype match.

d. Absolute paths shall not be used in include file
names.

e. Each source file shall be free of unused include files.

f. No source file shall #include another source file.

Embedded C Coding Standard

 46

Reasoning: The purpose and internal layout of a source file
module should be clear to all who maintain it. For
example, the public functions are generally of most interest
and thus appear ahead of the private functions they call.
Of critical importance is that every function declaration be
matched by the compiler against its prototype.

Exceptions: None.

Enforcement: Prior to each build, an automated tool shall
scan source files to ensure they #include their own header
file but not unused header files. Lint is an example of a
tool that can be configured to perform the second check
automatically.

 barrgroup.com/coding-standard

 47

4.4 File Templates

Rules:

a. A set of templates for header files and source files
shall be maintained at the project level. See
Appendix A and Appendix B for suggested
templates.

Reasoning: Starting each new file from a template ensures
consistency in file header comment blocks and ensures
inclusion of appropriate copyright notices.

Exceptions: None.

Enforcement: The consistency of comment block formats
shall be enforced during code reviews.

Embedded C Coding Standard

 48

5 Data Types

5.1 Naming Conventions

Rules:

a. The names of all new data types, including
structures, unions, and enumerations, shall consist
only of lowercase characters and internal
underscores and end with ‘_t’.

b. All new structures, unions, and enumerations shall
be named via a typedef.

Example:

typedef struct

{

 uint16_t count;

 uint16_t max_count;

 uint16_t _unused;

 uint16_t control;

} timer_t;

 barrgroup.com/coding-standard

 49

Reasoning: Type names and variable names are often
appropriately similar. For example, a set of timer control
registers in a peripheral calls out to be named ‘timer’. To
distinguish the structure definition that defines the register
layout, it is valuable to create a new type with a distinct
name, such as ‘timer_t’. If necessary this same type could
then be used to create a shadow copy of the timer registers,
say called ‘timer_shadow’.

Exceptions: It is not necessary to use typedef with
anonymous structures and unions.

Enforcement: An automated tool shall scan new or
modified source code prior to each build to ensure that the
keywords struct, union, and enum are used only within
typedef statements or in anonymous declarations.

Embedded C Coding Standard

 50

5.2 Fixed-Width Integers

Rules:

a. Whenever the width, in bits or bytes, of an integer
value matters in the program, one of the fixed width
data types shall be used in place of char, short, int,
long, or long long. The signed and unsigned fixed
width integer types shall be as shown in the table
below.12

Integer Width Signed Type Unsigned Type

8 bits int8_t uint8_t

16 bits int16_t uint16_t

32 bits int32_t uint32_t

64 bits int64_t uint64_t

b. The keywords short and long shall not be used.

c. Use of the keyword char shall be restricted to the
declaration of and operations concerning strings.

12 If program execution speed is also a consideration, note that
the [C99] standard defines a set of “fastest” fixed-width types.
For example, uint_fast8_t is the fastest integer type that can hold
at least 8 bits of unsigned data.

 barrgroup.com/coding-standard

 51

Reasoning: The [C90] standard allows implementation-
defined widths for char, short, int, long, and long long types,
which leads to portability problems. The [C99] standard
did not resolve this, but introduced the uniform type
names shown in the table, which are defined in the C99
header file <stdint.h>.

Exceptions: In the absence of a C99-compliant compiler, it
is acceptable to define the set of fixed width types in the
table above as typedefs based on char, short, int, long, and
long long. If this is done, use compile-time checks (such as
static assertions) to have the compiler flag incorrect type
definitions. It is acceptable to use the native types when C
Standard Library functions are used—just be careful.

Enforcement: At every build an automated tool shall scan
for and flag the use of the keywords short and long, which
are not to be used. Compliance with the other rules shall
be checked during code reviews.

Embedded C Coding Standard

 52

5.3 Signed Integers

Rules:

a. Bit-fields shall not be defined within signed integer
types.

b. None of the bit-wise operators (i.e., &, |, ~, ^, <<,
and >>) shall be used to manipulate signed integer
data.

c. Signed integers shall not be combined with
unsigned integers in comparisons or expressions. In
support of this, decimal constants meant to be
unsigned should be declared with a ‘u’ at the end.

Example:

uint8_t a = 6u;

int8_t b = -9;

if (a + b < 4)

{

 // This correct path should be executed

 // if -9 + 6 were -3 < 4, as anticipated.

}

else

{

 // This incorrect path is actually executed,

 // as -9 + 6 becomes (0xFF – 9) + 6 = 252.

}

 barrgroup.com/coding-standard

 53

Reasoning: Several details of the manipulation of binary
data within signed integer containers are implementation-
defined behaviors of the C standard. Additionally, the
results of mixing signed and unsigned data can lead to
data-dependent bugs.

Exceptions: None.

Enforcement: Static analysis tools can be used to detect
violations of these rules.

Embedded C Coding Standard

 54

5.4 Floating Point

Rules:

a. Avoid the use of floating point constants and
variables whenever possible. Fixed-point math may
be an alternative.

b. When floating point calculations are necessary:

i. Use the [C99] type names float32_t, float64_t,
and float128_t.

ii. Append an ‘f’ to all single-precision constants
(e.g., pi = 3.1415927f).

iii. Ensure that the compiler supports double-
precision, if your math depends on it.

iv. Never test for equality or inequality of
floating point values.

Example:

// Ensure the compiler supports double-precision.

#include <limits.h>

#if (DBL_DIG < 10)

 #error “Double precision is not available!”

#endif

 barrgroup.com/coding-standard

 55

Reasoning: There are a large number of risks of errors
stemming from incorrect use of floating point arithmetic;
these are outside the scope of this document.13 By default,
C promotes all floating-point constants to double precision,
which may be inefficient or unsupported on the target
platform. However, many microcontrollers do not have
any hardware support for floating point math. The
compiler may not warn of these incompatibilities, instead
performing the requested numerical operations by linking
in a large (typically a few kilobytes of code) and slow
(numerous instruction cycles per operation) floating-point
emulation library.

Exceptions: None.

Enforcement: These rules shall be enforced during code
reviews.

13 [Seacord] has a nice explanation of these issues and some
suggested guidelines in Chapter 6.

Embedded C Coding Standard

 56

5.5 Structures and Unions

Rules:

a. Appropriate care shall be taken to prevent the
compiler from inserting padding bytes within struct
or union types used to communicate to or from a
peripheral or over a bus or network to another
processor.

b. Appropriate care shall be taken to prevent the
compiler from altering the intended order of the bits
within bit-fields.14

Reasoning: There is a tremendous amount of
implementation-defined behavior in the area of structures
and unions. Bit-fields, in particular, suffer from severe
portability problems, including the lack of a standard bit
ordering and no official support for the fixed-width integer
types they so often call out to be used with.

Exceptions: None.

Enforcement: These rules shall be enforced during code
reviews.

14 Options include static assertions or other compile-time checks
as well as the use of preprocessor directives to select one of two
competing struct definitions.

 barrgroup.com/coding-standard

 57

6 Procedures

6.1 Naming Conventions

Rules:

a. No procedure shall have a name that is a keyword of
C, C++, or any other well-known extension of the C
programming language, including specifically K&R
C and C99. Restricted names include interrupt,
inline, class, true, false, public, private, friend, protected,
and many others.

b. No procedure shall have a name that overlaps a
function in the C standard library. Examples of such
names include strlen, atoi, and memset.

c. No procedure shall have a name that begins with an
underscore.

d. No procedure name shall be longer than 31
characters.15

e. No function name shall contain any uppercase
letters.

f. No macro name shall contain any lowercase letters.

15 Rule 11 (required) of [MISRA98].

Embedded C Coding Standard

 58

g. Underscores shall be used to separate words in
procedure names.

h. Each procedure’s name shall be descriptive of its
purpose. Note that procedures encapsulate the
“actions” of a program and thus benefit from the use
of verbs in their names (e.g., adc_read()); this “noun-
verb” word ordering is recommended.
Alternatively, procedures may be named according
to the question they answer (e.g., led_is_on()).

i. The names of all public functions shall be prefixed
with their module name and an underscore (e.g.,
force_read()).

Reasoning: Good function names make reviewing and
maintaining code easier (and thus cheaper). The data
(variables) in programs are nouns. Functions manipulate
data and are thus verbs. The use of module prefixes is in
keeping with the important goal of encapsulation and
helps avoid procedure name overlaps.

Exceptions: None.

Enforcement: Compliance with these naming rules shall be
established in the detailed design phase and be enforced
during code reviews.

 barrgroup.com/coding-standard

 59

6.2 Functions

Rules:

a. All reasonable effort shall be taken to keep the
length of each function limited to one printed page,
or about 50-100 lines.

b. Whenever possible, all functions shall be made to
start at the top of a printed page, except when
several small functions can fit onto a single page.

c. All functions shall have just one exit point and it
shall be at the bottom of the function. That is, the
keyword return shall appear a maximum of once.16

d. A prototype shall be defined for each public
function in the module header file.

e. All private functions shall be defined static.

f. Each parameter shall be explicitly declared and
meaningfully named.

16 In fact, [IEC61508] requires it.

Embedded C Coding Standard

 60

Example:

int

state_change (int event)

{

 int result = ERROR;

 if (EVENT_A == event)

 {

 result = STATE_A;

 // Don’t return here.

 }

 else

 {

 result = STATE_B;

 }

 return (result);

}

Reasoning: Code reviews take place at the function level.
Each function should be visible on a single printed page, so
that flipping back and forth (a distraction) is not necessary.
Similarly, multiple exit points are distracting to reviewers
and thus do more harm than good to readability.

Exceptions: None.

Enforcement: Compliance with these rules shall be checked
during code reviews.

 barrgroup.com/coding-standard

 61

6.3 Function-Like Macros

Rules:

a. Parameterized macros shall not be used if an inline
function can be written to accomplish the same
task.17

b. If parameterized macros are used for some reason,
these rules apply:

i. Surround the entire macro body with
parentheses.

ii. Surround each use of a parameter with
parentheses.

iii. Use each argument no more than once, to
avoid unintended side effects.

Example:

// Don’t do this ...

#define MAX(A, B) ((A) > (B) ? (A) : (B))

// ... if you can do this instead.18

inline int max(int num1, int num2)

17 [C99] formally added the C++ keyword inline to C.
18 Note that individual functions will be needed to support each
base type for comparison.

Embedded C Coding Standard

 62

Reasoning: There are a lot of risks associated with the use
of preprocessor #defines, and many of them relate to the
creation of parameterized macros. The extensive use of
parentheses (as shown in the example) is important, but
does not eliminate the unintended double increment
possibility of a call such as MAX(i++, j++). Other risks of
macro misuse include comparison of signed and unsigned
data or any test of floating-point data. Making matters
worse, macros are invisible at run-time and thus impossible
to step into within the debugger.19

Exceptions: In the case of necessary (and tested, and
documented) efficiency, a local exception can be approved.
That’s when the other rules kick in.

Enforcement: The avoidance of and safe use of macros
shall be enforced during code reviews.

19 Of course, inline functions are also invisible at debug time.

 barrgroup.com/coding-standard

 63

6.4 Tasks

Rules:

a. All functions that represent tasks (a.k.a., threads)
shall be given names ending with “_task” (or
“_thread”).

Example:

void

alarm_task (void * p_data)

{

 alarm_t alarm = ALARM_NONE;

 int err = OS_NO_ERR;

 for (;;)

 {

 alarm = OSMboxPend(alarm_mbox, &err);

 // Process alarm here.

 }

}

Reasoning: Each task in a real-time operating system
(RTOS) is like a mini-main(), typically running forever in
an infinite loop. It is valuable to easily identify these
important functions during code reviews and debugging
sessions.

Exceptions: Alternatively, “_thread” may be used.

Embedded C Coding Standard

 64

Enforcement: This naming convention shall be enforced
during the detailed design phase and in code reviews.

 barrgroup.com/coding-standard

 65

6.5 Interrupt Service Routines

Rules:

a. Interrupt service routines (ISRs) are not ordinary
functions. The compiler must be informed that the
function is an ISR by way of a #pragma or compiler-
specific keyword, such as “__interrupt”.

b. All functions that implement ISRs shall be given
names ending with “_isr”.

c. To ensure that ISRs are not inadvertently called from
other parts of the software (they may corrupt the
CPU and call stack if this happens), each ISR
function shall lack a prototype, be declared static,
and be located at the end of the associated driver
module.20

d. A stub or default ISR shall be installed in the vector
table at the location of all unexpected or otherwise
unhandled interrupt sources. Each such stub could
attempt to disable future interrupts of the same type,
say at the interrupt controller, and assert().21

20 Be forewarned that a smart static analsys tool, such as lint, will
likely complain about this unreachability.
21 Although this doesn’t prevent any bugs, it sure does help find
bugs in the hardware and makes the system more robust.

Embedded C Coding Standard

 66

Reasoning: An ISR is an extension of the hardware. By
definition, it and the straight-line code are asynchronous to
each other. If they share global data, that data must be
protected with interrupt disables in the straight-line code.
The ISR must not get hung up inside the operating system
or waiting for a variable or register to change value.

Exceptions: None.

Enforcement: These rules shall be enforced during code
reviews.

 barrgroup.com/coding-standard

 67

7 Variables

7.1 Naming Conventions

Rules:

a. No variable shall have a name that is a keyword of
C, C++, or any other well-known extension of the C
programming language, including specifically K&R
C and C99. Restricted names include interrupt,
inline, restrict, class, true, false, public, private, friend,
and protected.

b. No variable shall have a name that overlaps with a
variable name from the C standard library (e.g.,
errno).

c. No variable shall have a name that begins with an
underscore.

d. No variable name shall be longer than 31 characters.

e. No variable name shall be shorter than 3 characters,
including loop counters.22

f. No variable name shall contain any uppercase
letters.

22 This is because you can’t do a meaningful global search for “i”.

Embedded C Coding Standard

 68

g. No variable name shall contain any numeric value
that is called out elsewhere, such as the number of
elements in an array or the number of bits in the
underlying type.

h. Underscores shall be used to separate words in
variable names.

i. Each variable’s name shall be descriptive of its
purpose.

j. The names of all global variables shall begin with
the letter ‘g’. For example, g_zero_offset.

k. The names of all pointer variables shall begin with
the letter ‘p’. For example, *p_led_reg.

l. The names of all pointer-to-pointer variables shall
begin with the letter pp. For example,
gpp_vector_table.

m. The names of all integer variables containing
“effectively Boolean” information (i.e., 0 vs. non-
zero) shall begin with the letter ‘b’ and phrased as
the question they answer.23 For example,
b_done_yet or gb_is_buffer_full.

23 It is unsafe, in C, to define constants such as TRUE and FALSE
where TRUE is equal to 1. However, it is safe to compare
“effectively Boolean” integer values against 0. For example, the
test “if (!gb_buffer_is_full)” is safe and consistent with Rule 13.2

 barrgroup.com/coding-standard

 69

Reasoning: The base rules are adopted to maximize code
portability across compilers. Many C compilers recognize
differences only in the first 31 characters in a variable’s
name and reserve names beginning with an underscore for
internal names. The other rules are meant to highlight
risks and ensure consistent proper use of variables.

Exceptions: None.

Enforcement: These variable-naming rules shall be
enforced during code reviews.

(advisory) of [MISRA04]. Note too that [C99] adds <stdbool.h>,
which defines a bool type and constants true and false.

Embedded C Coding Standard

 70

7.2 Initialization

Rules:

a. All variables shall be initialized before use.

b. It is preferable to create variables as you need them,
rather than all at the top of a function.24

Example:

for (int loop = 0; loop < MAX_LOOPS; loop++)

{

 ...

}

Reasoning: Too many programmers assume the C run-
time will watch out for them. This is a very bad
assumption, which can prove dangerous in a real-time
system. It is easier to initialize some variables closer to
their use, and this also aids readability of the code.25

Exceptions: None.

24 Yet another handy feature allowed by [C99] but not in [C90].
25 One study of back-and-forth eye movements during code
reviews ([Uwano]) demonstrated the importance of placing
variable declarations as close as possible to the code that uses
them.

 barrgroup.com/coding-standard

 71

Enforcement: An automated tool shall scan all of the
source code prior to each build, to warn about variables
used prior to initialization. Lint is an example of a tool that
can do this well.

Embedded C Coding Standard

 72

8 Expressions and Statements

8.1 Variable Declarations

Rules:

a. The comma (‘,’) operator shall not be used within
variable declarations.

Example:

char * x, y; // Is y supposed to be a pointer?

Reasoning: The cost of placing each declaration on a line of
its own is low. By contrast, the risk that either the compiler
or a maintainer will misunderstand your intentions is high.

Exceptions: None.

Enforcement: These rules shall be enforced during code
reviews.

8.2 If-Else Statements

Rules:

a. The shortest (measured in lines of code) of the if and
else if clauses should be placed first.26

26 Thanks to [Holub] for putting this “formatting for readability”
idea into words.

 barrgroup.com/coding-standard

 73

b. Nested if-else statements shall not be deeper than
two levels. Use function calls or switch statements
to reduce complexity and aid understanding.

c. Assignments shall not be made within an if or else if
expression.

d. Any if statement with an else if clause shall end with
an else clause.27

Example:

if (NULL == p_object)

{

 result = ERR_NULL_PTR;

}

else if (p_object = malloc(sizeof(object_t))) // No!

{

 ...

}

else

{

 // Normal processing steps,

 // which require many lines of code.

 ...

}

Reasoning: Long clauses can distract the human eye from
the decision-path logic. By putting the shorter clause

27 This is the equivalent of requiring a default case in every
switch, as we do below.

Embedded C Coding Standard

 74

earlier, the decision path becomes easier to follow. (And
easier to follow is always good for reducing bugs.) Deeply
nested if blocks are a sure sign of a complex and fragile
state machine implementation; there is always a safer and
more readable way to do the same thing.

Exceptions: For efficiency purposes, it may be desirable to
reorder the sequence of if-else clauses to ensure the most
frequent or most critical case is always found the fastest.
Of course, if-else statements are typically not as efficient as
tables of function pointers in terms of worst-case analysis.

Enforcement: These rules shall be enforced during code
reviews, when reviewers feel it may aid readability.

 barrgroup.com/coding-standard

 75

8.3 Switch Statements

Rules:

a. The break for each case shall be indented to align
with the associated case, rather than with the
contents of the case code block.

b. All switch statements shall contain a default block.

Example:

switch (err)

{

 case ERR_A:

 ...

 break;

 case ERR_B:

 ...

 break;

 default:

 ...

 break;

}

Embedded C Coding Standard

 76

Reasoning: Switch statements are powerful, but prone to
errors such as missed break statements and unhandled
cases. By aligning the case and break keywords it is possible
to spot missing breaks.

Exceptions: None.

Enforcement: These rules can be enforced by an automated
scan of all new or modified code during each build.
Alternatively, they shall be enforced in code reviews.

 barrgroup.com/coding-standard

 77

8.4 Loops

Rules:

a. Magic numbers shall not be used as the initial value
or in the endpoint test of a while or for loop.28

b. Except for a single loop counter initialization in the
first clause of a for statement, assignments shall not
be made in any loop’s controlling expression.

c. Infinite loops shall be implemented via the
controlling expression “for (;;)”.29

d. Each loop with an empty body shall feature a set of
braces enclosing a comment to explain why nothing
needs to be done until after the loop terminates.

28 Note that sizeof() is a theoretically handy way to dimension an
array but that this method does not work when you pass a
pointer to the array instead of the array itself. Thus the most
portable method is a constant shared between the array
declaration and the loop.
29 We can make no compelling technical argument against while
(1), but note that Kernighan & Ritchie have long recommended
for (;;) and so many C programmers have become accustomed to
structuring their infinite loops this way. In such a case,
consistency is all that really matters.

Embedded C Coding Standard

 78

Example:

// Don’t use a magic number ...

for (int row = 0; row < 100; row++)

{

 // ... when you mean a constant.

 for (int col = 0; col < MAX_COL; col++)

 {

 ...

 }

}

Reasoning: It is always important to synchronize the
number of loop iterations to the size of the underlying data
structure. Doing this through a single constant prevents a
whole class of bugs that can result when changes in one
part of the code, such as the dimension of an array, are not
matched by changes in other areas of the code, such as a
loop iterator that operates on the array. The use of named
constants also makes the code easier to read and maintain.

Exceptions: It is acceptable to start or end a loop with an
integer value of 0 (considered less magical by most), such
as when iterating from or toward the base of an array.

Enforcement: These rules shall be enforced during code
reviews.

 barrgroup.com/coding-standard

 79

8.5 Unconditional Jumps

Rules:

a. As stated earlier, the keywords goto, continue, and
break shall not be used to create unconditional
jumps.

Reasoning: Algorithms that utilize unconditional jumps to
move the instruction pointer can be rewritten in a manner
that is more readable and thus easier to maintain.

Exceptions: None.

Enforcement: These rules shall be enforced by an
automated scan of all modified or new modules for
inappropriate use of these tokens.

Embedded C Coding Standard

 80

8.6 Equivalence Tests

Rules:

a. When evaluating the equality or inequality of a
variable with a constant value, always place the
constant value on the left side of the comparison
operator, as shown in the if-else example above.

Reasoning: It is always desirable to detect possible typos
and as many other bugs as possible at compile-time; run-
time discovery may be dangerous to the user of the
product and require significant effort to localize. By
following this rule, the compiler can detect erroneous
attempts to assign (i.e., = instead of ==) a new value to a
constant.

Exceptions: None.

Enforcement: A static analysis tool shall be configured to
raise an error or warning about all assignment statements
where comparisons are ordinarily expected.

 barrgroup.com/coding-standard

 81

Bibliography

[Barr] Barr, Michael and Anthony Massa.
“Programming Embedded Systems with C
and GNU Development Tools,” 2nd Edition.
O’Reilly, 2006.

[C90] “ISO/IEC9899:1990, Programming
Languages – C,” ISO, 1990.

[C99] “ISO/IEC9899:1999, Programming
Languages – C,” ISO, 1999.

[Dictionary] Ganssle, Jack G. and Michael Barr.
“Embedded Systems Dictionary.” CMP
Books, 2003.

[Ganssle] Ganssle, Jack G. “A Firmware Development
Standard: Version 1.4,” The Ganssle Group,
May 2007.

[Hatton] Hatton, Les. “Safer C: Developing Software
for High-Integrity and Safety-Critical
Systems.” McGraw-Hill, 1994.

[Holub] Holub, Allen I. “Enough Rope to Shoot
Yourself in the Foot: Rules for C and C++
Programming.” McGraw-Hill, 1995.

Embedded C Coding Standard

 82

[IEC61508] “Functional Safety of
Electrical/Electronic/Programmable
Electronic Safety-Related Systems,”
International Electromechanical Commission,
1998-2000.

[Koenig] Koenig, Andrew. “C Traps and Pitfalls.”
Addison-Wesley, 1988.

[MISRA98] “Guidelines for the Use of the C Language in
Vehicle Based Software,” The Motor Industry
Software Reliability Association, April 1998.

[MISRA04] “MISRA-C:2004 Guidelines for the Use of the
C Language in Critical Systems,” The Motor
Industry Software Reliability Association,
October 2004.

[Prinz] Prinz, Peter and Ulla Kirch-Prinz. “C Pocket
Reference.” O’Reilly, 2003.

[Seacord] Seacord, Robert C. “The CERT Secure C
Coding Standard.” Addison-Wesley, 2009.

[Uwano] Uwano, H., Nakamura, M., Monden, A., and
Matsumoto, K. “Analyzing Individual
Performance of Source Code Review Using
Reviewer’s Eye Movement,” Proceedings of the
2006 Symposium on Eye Tracking Research &
Applications, San Diego, March 27-29, 2006.

 barrgroup.com/coding-standard

 83

Appendix A: Header File Template

/** @file module.h

*

* @brief A description of the module’s purpose.

*

* @par

* COPYRIGHT NOTICE: (c) 2013 Barr Group.

* All rights reserved.

*/

#ifndef _MODULE_H

#define _MODULE_H

#ifdef __cplusplus

extern “C” {

#endif

int8_t max8(int8_t num1, int8_t num2);

#ifdef __cplusplus

}

#endif

#endif /* _MODULE_H */

Embedded C Coding Standard

 84

Appendix B: Source File Template

/** @file module.c

*

* @brief A description of the module’s purpose.

*

* @par

* COPYRIGHT NOTICE: (c) 2013 Barr Group.

* All rights reserved.

*/

#include “module.h”

/*!

* @brief Identify the larger of two 8-bit numbers.

* @param[in] num1 The first number to be compared.

* @param[in] num2 The second number to be compared.

* @return int8_t

*/

int8_t

max8 (int8_t num1, int8_t num2)

{

 return ((num1 > num2) ? num1 : num2);

}

 barrgroup.com/coding-standard

 85

Appendix C: Standard Abbreviations

Abbreviation Meaning

adc analog-to-digital converter

avg average

b_ boolean (i.e., 0 or non-zero)

buf buffer

cfg configuration

cmp compare

curr current

dac digital-to-analog converter

ee (serial) EEPROM

err error

g_ global

gpio general-purpose I/O pins

h_ handle (to)

Embedded C Coding Standard

 86

init initialize

io input/output

isr interrupt service routine

lcd liquid crystal display

led light-emitting diode

max maximum

mbox mailbox

mgr manager

min minimum

msec millisecond30

msg message

next next (item in a list)

nsec nanosecond

30 Note that second(s) shall not be abbreviated, nor minute, hour,
day, week, month, or year. Among other things, this rule
eliminates conflict between minute and minimum (for “min”).

 barrgroup.com/coding-standard

 87

num number (of)

p_ pointer (to)

pp_ pointer to a pointer (to)

prev previous (item in a list)

prio priority

pwm pulse width modulation

q queue

reg register

rx receive

sem semaphore

str string (null terminated)

sync synchronize

temp temperature

tmp temporary

tx transmit

Embedded C Coding Standard

 88

usec microsecond

